|   | 
Details
   web
Records
Author Mooij, J. E.; Dekker, P.
Title (up) Static properties of two- and three-dimensional superconducting constrictions Type Journal Article
Year 1978 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 33 Issue 5/6 Pages 551-576
Keywords superconducting microbridges, superconducting strip, coherence length
Abstract Calculations have been performed on superconducting constrictions with hyperbolic geometry. Stationary Ginzburg-Landau equations are used, neglecting magneticfields. Emphasis is placed on the difference between two-and three -dimensional constrictions, which is related to the difference between uniform-thickness (UT) and variable-thickness (VT) superconducting microbridges. The width of the constriction w, normalized to the coherence length ξ is indicated by the parameter A (â‰<192> w/2ξ). It is found that small (A < 0.1), three-dimensional constrictions and VT bridges have a sinusoidal current-phase relation, linear temperature dependence of the critical current I c, and an I cR product (Ris the normal state resistance) equal to the Ambegaokar-Baratoff expression for Josephson junctions near T c. Two-dimensional constrictions behave as if they consist of an inner core with junction properties, in series with the films on both sides. The core consists of the region within a coherence length from the center of the structure. This size is temperature dependent. The core shows a sinusoidal current-phase relation and IcR according to Ambegaokar and Baratoff. For the whole constriction neither the phase difference nor R is finite. Two-dimensional constrictions have linear temperature dependence only when they are extremely narrow (A < 0.001). In two-dimensionalbridges the order parameter is depressed cover a distance of approximately the coherence length; in small three-dimensional constrictions this distance is approximately equal to the width. In narrow constrictions (and short microbridges) the current is not homogeneously distributedover the cross section. The effect has been investigated that occurs when in three-dimensional constrictions the width w is not much larger than l 0, the electron mean free path in the basic material. To this purpose a Ginzburg-Landau equation is derived from the Zaitsev boundary conditions which is valid for continuously changing material parameters. The critical current is decreased, but the IcR product remains constant.The results of the calculations are compared with experimental results for superconducting microbridges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 926
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.
Title (up) Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 151 Issue 1-2 Pages 591-596
Keywords NbN SSPD, SNSPD
Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1244
Permanent link to this record