Records |
Author  |
Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G. |
Title |
Graphene-based lateral Schottky diodes for detecting terahertz radiation |
Type |
Conference Article |
Year |
2018 |
Publication |
Proc. Optical Sensing and Detection V |
Abbreviated Journal |
Proc. Optical Sensing and Detection V |
Volume |
10680 |
Issue |
|
Pages |
30-39 |
Keywords |
graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves |
Abstract |
Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Spie |
Place of Publication |
|
Editor |
Berghmans, F.; Mignani, A.G. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
10.1117/12.2307020 |
Serial |
1306 |
Permanent link to this record |
|
|
|
Author  |
Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. |
Title |
Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits |
Type |
Journal Article |
Year |
2017 |
Publication |
Optica |
Abbreviated Journal |
Optica |
Volume |
4 |
Issue |
5 |
Pages |
557-562 |
Keywords |
Waveguide integrated superconducting single-photon detectors; Nanophotonics and photonic crystals; Quantum detectors; Spectrometers and spectroscopic instrumentation |
Abstract |
The detection of individual photons by superconducting nanowire single-photon detectors is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multicolor imaging techniques, such as single-photon spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz at 80% of the devices' critical current. We demonstrate multidetector devices for telecommunication and visible wavelengths, and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength-division multiplexing on a chip. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ kovalyuk @ |
Serial |
1119 |
Permanent link to this record |
|
|
|
Author  |
Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A. |
Title |
Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser |
Type |
Journal Article |
Year |
2021 |
Publication |
Optical Engineering |
Abbreviated Journal |
Optical Engineering |
Volume |
60 |
Issue |
8 |
Pages |
1-8 |
Keywords |
HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer |
Abstract |
Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Spie |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
10.1117/1.Oe.60.8.082019 |
Serial |
1260 |
Permanent link to this record |
|
|
|
Author  |
Takesue, Hiroki; Dyer, Shellee D.; Stevens, Martin J.; Verma, Varun; Mirin, Richard P.; Nam, Sae Woo |
Title |
Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors |
Type |
Journal Article |
Year |
2015 |
Publication |
|
Abbreviated Journal |
Optica |
Volume |
2 |
Issue |
|
Pages |
|
Keywords |
|
Abstract |
Quantum teleportation is an essential quantum operation by which we can transfer an unknown quantum state to a remote location with the help of quantum entanglement and classical communication. Since the first experimental demonstrations using photonic qubits and continuous variables, the distance of photonic quantum teleportation over free-space channels has continued to increase and has reached >100 km. On the other hand, quantum teleportation over optical fiber has been challenging, mainly because the multifold photon detection that inevitably accompanies quantum teleportation experi- ments has been very inefficient due to the relatively low de- tection efficiencies of typical telecom-band single-photon detectors. Here, we report on quantum teleportation over optical fiber using four high-detection-efficiency supercon- ducting nanowire single-photon detectors (SNSPDs). These SNSPDs make it possible to perform highly efficient multi- fold photon measurements, allowing us to confirm that the quantum states of input photons were successfully tele- ported over 100 km of fiber with an average fidelity of 83.7 2.0%. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ alex_kazakov @ |
Serial |
1004 |
Permanent link to this record |