|   | 
Details
   web
Records
Author Gao, G. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
Title A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 19-23
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number RPLAB @ s @ qc_lasers_gao_isstt16 Serial 367
Permanent link to this record
 

 
Author Klaassen, T. O.; Hovenier, J. N.; Adam, A. J. L.; Fischer, J.; Jakob, G.; Poglitsch, A.; Redlich, B.
Title Terahertz calorimetry for the Herschel Space Observatory Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal
Volume Issue Pages 815-816
Keywords mirror, reflection index, emissivity, calorimetry, space observatory, terahertz, THz
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 578
Permanent link to this record
 

 
Author Merkel, H. F.; Khosropanah, P.; Sigfrid Yngvesson, K.; Cherednichenko, S.; Kroug, M.; Adam, A.; Kollberg, E.
Title An active zone small signal model for hot-electron bolometric mixers Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 55
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number RPLAB @ s @ losses_in_contacts_merkel Serial 320
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Khosropanah, P.; Adam, A.; Merkel, H.; Kolberg, E.; Loudkov, D.; Voronov, B.; Gol'tsman, G.; Richter, H.; Hübers, H. W.
Title A broadband terahertz heterodyne receiver with an NbN HEB mixer Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 85-95
Keywords NbN HEB mixers
Abstract We present a broadband and low noise heterodyne receiver for 1.4-1.7 THz designed for the Hershel Space Observatory. A phonon- cooled NbN HEB mixer was integrated with a normal metal double- slot antenna and an elliptical silicon lens. DSB receiver noise temperature Tr was measured from 1 GHz through 8GHz intermediate frequency band with 50 MHz instantaneous bandwidth. At 4.2 K bath temperature and at 1.6 THz LO frequency Tr is 800 K with the receiver noise bandwidth of 5 GHz. While at 2 K bath temperature Tr was as low as 700 K. At 0.6 THz and 1.1 THz a spiral antenna integrated NbN HEB mixer showed the receiver noise temperature 500 K and 800 K, though no antireflection coating was used in this case. Tr of 1100 K was achieved at 2.5 THz while the receiver noise bandwidth was 4 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harward University
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 332
Permanent link to this record
 

 
Author Khosropanah, P.; Merkel, H.; Yngvesson, S.; Adam, A.; Cherednichenko, S.; Kollberg, E.
Title A distributed device model for phonon-cooled HEB mixers predicting IV characteristics, gain, noise and IF bandwidth Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 474-488
Keywords HEB mixer numerical model, diffusion cooling channel, diffusion channel, distributed HEB model, distributed model
Abstract A distributed model for phonon-cooled superconductor hot electron bolometer (HEB) mixers is given, which is based on solving the one-dimensional heat balance equation for the electron temperature profile along the superconductor strip. In this model it is assumed that the LO power is absorbed uniformly along the bridge but the DC power absorption depends on the local resistivity and is thus not uniform. The electron temperature dependence of the resistivity is assumed to be continuous and has a Fermi form. These assumptions are used in setting up the non-linear heat balance equation, which is solved numerically for the electron temperature profile along the bolometer strip. Based on this profile the resistance of the device and the IV curves are calculated. The IV curves are in excellent agreement with measurement results. Using a small signal model the conversion gain of the mixer is obtained. The expressions for Johnson noise and thermal fluctuation noise are derived. The calculated results are in close agreement with measurements, provided that one of the parameters used is adjusted.
Address
Corporate Author Thesis
Publisher Place of Publication University of Michigan, Ann Arbor, MI USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 893
Permanent link to this record