|   | 
Details
   web
Records
Author (up) Smirnov, A. V.; Baryshev, A. M.; de Bernardis, P.; Vdovin, V. F.; Gol'tsman, G. N.; Kardashev, N. S.; Kuz'min, L. S.; Koshelets, V. P.; Vystavkin, A. N.; Lobanov, Yu. V.; Ryabchun, S. A.; Finkel, M. I.; Khokhlov, D. R.
Title The current stage of development of the receiving complex of the millimetron space observatory Type Journal Article
Year 2012 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 54 Issue 8 Pages 557-568
Keywords Millimetron space observatory, HEB applications
Abstract We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1079
Permanent link to this record
 

 
Author (up) Smirnov, A.; Golubev, E.; Arkhipov, M.; Filina, E.; Pyshnov, V.; Myshonkova, N.; Fedorchuk, S.; Kosmovich, T.; Vinogradov, I.; Baryshev, A.; de Graauw, Th.; Likhachev, S.; Kardashev, N.
Title Millimetron Space Observatory: progress in the development of payload module Type Conference Article
Year 2019 Publication Proc. 30th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 30th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 180-181
Keywords Millimetron space observatory, primary mirror
Abstract Millimetron Space Observatory (MSO) is mission addressed to creation a space cryogenic telescope with aperture about 10-m [1]. Such telescope will allow scientific community to have an astronomical instrument with enormous sensitivity and angular resolution in the submillimeter and far-infrared wavelength ranges. We plan to install at the telescope several FIR and sub-millimeter scientific instruments, which will enable high-resolution imaging and spectroscopy observations with unprecedented sensitivity. At the same time, MSO will enable observations with an extremely high angular resolution (up to 0.1×10 -6 arcsec) as an element of a ground-space very long baseline interferometry system (S-VLBI). Thereby the observatory will contribute breakthrough capability into solution a number of cosmology and fundamental astrophysics questions about the origin and evolution of our Universe, galaxies, stars and other objects [2]. The MSO is divided into two parts: the payload module and the bus module. Due to the complexity of the payload module, most of the recent years of work are focused on it. This module includes an antenna of the telescope, scientific receivers, functional and service systems and a high-gain radio system for transmitting scientific data to Earth. The primary mirror of the telescope will be deployable and consist from of a 3-m aperture central part surrounded by 24 deployable petals. The concept of petals deployment is based on the successfully launched and currently working Radioastron project [3]. The surface accuracy of the deployable 10-m primary mirror of Radioastron achieves about 1 mm in space conditions. The telescope of MSO would have much better surface accuracy – less than 10 μm (rms). In order to achieve this we plan to use an active surface control system based on a wave front sensing. This system will be periodically employed to correct inaccuracies in the positions of the panels caused by different factors. A combination of a high modulus carbon fiber reinforced plastic (CFRP) and a cyanate ester resin as a binder provides a lightweight structure with low moisture absorption, high thermal stability and high stiffness. This combination has been chosen for the material of the primary mirror of telescope and many parts of it. The panels are mounted on the back support structure (Fig. 1) made from CFRP via precision cryogenic actuators. To achieve the required sensitivity of the telescope in the submm/FIR we need to cool antenna down to the temperature less than 10K (goal). It may be possible to do this on-orbit only by a combination of effective radiation cooling and additional active mechanical cooling. A cold space antenna requires minimization and stability of external thermal radiation. This is one of the reasons why MSO will be placed into orbit around the second Earth-Sun Lagrange point (L2). The MSO antenna into L2 will be cooled passively to a temperature about 30 – 60K by a suite of the deployable multi-layer V-groove shields. The following steps to reduce the temperature of the antenna are based on active reducing the thermal loads applied to it. Active mechanical cooling is based on existing close cycling space mechanical coolers. In this work, we will focus on the progress in the development of payload module.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1280
Permanent link to this record
 

 
Author (up) Wild, W.; de Graauw, Th.; Baryshev, A.; Bos, A.; Gao, J. R.; Gunst, A.; Helmich, F.; ter Horst, R.; Jackson, B.; Maat, P.; Noordam, J.; Roelfsema, P.; Venema, L.; Whyborn, N.; Yagoubov, P.
Title Terahertz technology for ESPRIT – a far-infrared space interferometer Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ ESPRIT_interferom_Wild Serial 365
Permanent link to this record
 

 
Author (up) Wild, W.; Kardashev, N. S.; Likhachev, S. F.; Babakin, N. G.; Arkhipov, V. Y.; Vinogradov, I. S.; Andreyanov, V. V.; Fedorchuk, S. D.; Myshonkova, N. V.; Alexsandrov, Y. A.; Novokov, I. D.; Goltsman, G. N.; Cherepaschuk, A. M.; Shustov, B. M.; Vystavkin, A. N.; Koshelets, V. P.; Vdovin, V.F.; de Graauw, T.; Helmich, F.; vd Tak, F.; Shipman, R.; Baryshev, A.; Gao, J. R.; Khosropanah, P.; Roelfsema, P.; Barthel, P.; Spaans, M.; Mendez, M.; Klapwijk, T.; Israel, F.; Hogerheijde, M.; vd Werf, P.; Cernicharo, J.; Martin-Pintado, J.; Planesas, P.; Gallego, J. D.; Beaudin, G.; Krieg, J. M.; Gerin, M.; Pagani, L.; Saraceno, P.; Di Giorgio, A. M.; Cerulli, R.; Orfei, R.; Spinoglio, L.; Piazzo, L.; Liseau, R.; Belitsky, V.; Cherednichenko, S.; Poglitsch, A.; Raab, W.; Guesten, R.; Klein, B.; Stutzki, J.; Honingh, N.; Benz, A.; Murphy, A.; Trappe, N.; Räisänen, A.
Title Millimetron—a large Russian-European submillimeter space observatory Type Journal Article
Year 2009 Publication Exp. Astron. Abbreviated Journal Exp. Astron.
Volume 23 Issue 1 Pages 221-244
Keywords Millimetron space observatory, VLBI, very long baseline interferometry
Abstract Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0922-6435 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1402
Permanent link to this record
 

 
Author (up) Yates, S. J. C.; Baryshev, A. M.; Baselmans, J. J. A.; Klein, B.; Güsten, R.
Title Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors Type Journal Article
Year 2009 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 95 Issue 4 Pages 3
Keywords
Abstract Microwave kinetic inductance detectors have great potential for large, very sensitive detector arrays for use in, for example, submillimeter imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing ~1000 s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present here the concept and experimental demonstration of the use of fast Fourier transform spectrometer readout, showing no deterioration of the noise performance compared to the low noise analog mixing while allowing high multiplexing ratios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 697
Permanent link to this record