toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L. openurl 
  Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 86 Issue Pages 244104 (1 to 3)  
  Keywords HEB, QCL  
  Abstract (up) We report the first demonstration of an all solid-stateheterodyne receiver that can be used for high-resolution spectroscopy above 2THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8THz as local oscillator. We measure a double sideband receiver noise temperature of 1400K at 2.8THz and 4.2K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 905  
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte 2, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Increased bandwidth of NbN phonon cooled hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 381-386  
  Keywords NbN HEB mixers, IF bandwidth  
  Abstract (up) We study experimentally the IF gain bandwidth of NbN phonon-cooled hot-electron-bolometer (HEB) mixers for a set of devices with different contact structures but an identical NbN film. We observe that the IF bandwidth depends strongly on the exact contact structure and find an IF gain bandwidth of 6 GHz for a device with an additional superconducting layer (NbTiN) in between the active NbN film and the gold contact to the antenna. These results contradict the common opinion that the IF bandwidth is determined by the phonon-escape time between the NbN film and the substrate. Hence we calculate the IF gain bandwidth of a superconducting film using a two-temperature model. We find that the bandwidth increases strongly with operating temperature and is not limited by the phonon escape time. This is because of strong temperature dependence of the phonon specific heat in the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1494  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 17-24  
  Keywords NbN HEB mixers  
  Abstract (up) We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1491  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: