toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G. url  doi
openurl 
  Title A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300604 (1 to 4)  
  Keywords NbN HEB mixer  
  Abstract (up) A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1354  
Permanent link to this record
 

 
Author Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  doi
openurl 
  Title An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.  
  Volume 9 Issue 9 Pages 366-368  
  Keywords waveguide NbN HEB mixers  
  Abstract (up) A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1565  
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract (up) In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages 683-689  
  Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract (up) In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 164-167  
  Keywords NbN HEB mixer  
  Abstract (up) In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 341  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: