|   | 
Details
   web
Records
Author (down) Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G.
Title Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 391-394
Keywords NbN HEB mixers
Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1427
Permanent link to this record
 

 
Author (down) Meledin, D.; Tong, C.-Y. E.; Blundell, R.; Goltsman, G.
Title Measurement of intermediate frequency bandwidth of hot electron bolometer mixers at terahertz frequency range Type Journal Article
Year 2003 Publication IEEE Microw. Wireless Compon. Lett. Abbreviated Journal IEEE Microw. Wireless Compon. Lett.
Volume 13 Issue 11 Pages 493-495
Keywords waveguide NbN HEB mixers
Abstract We have developed a new experimental setup for measuring the IF bandwidth of superconducting hot electron bolometer mixers. In our measurement system we use a chopped hot filament as a broadband signal source, and can perform a high-speed IF scan with no loss of accuracy when compared to coherent methods. Using this technique we have measured the 3 dB IF bandwidth of hot electron bolometer mixers, designed for THz frequency operation, and made from 3-4 nm thick NbN film deposited on an MgO buffer layer over crystalline quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1509
Permanent link to this record
 

 
Author (down) Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 65-72
Keywords waveguide NbN HEB mixers
Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 326
Permanent link to this record
 

 
Author (down) Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 13 Issue 2 Pages 164-167
Keywords NbN HEB mixer
Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 341
Permanent link to this record
 

 
Author (down) Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G.
Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume 52 Issue 10 Pages 2338-2343
Keywords NbN HEB mixer, applications
Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1484
Permanent link to this record