|   | 
Details
   web
Records
Author Ryabchun, Sergey; Tong, Cheuk-yu Edward; Blundell, Raymond; Kimberk, Robert; Gol’tsman, Gregory
Title Stabilisation of a terahertz hot-electron bolometer mixer with microwave feedback control Type Conference Article
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume (down) Issue Pages 193-198
Keywords waveguide NbN HEB mixers, Allan variance, stability
Abstract We report on implementation of microwave feedback control loop to stabilise the performance of an HEB mixer receiver. It is shown that the receiver sensitivity increases by a factor of 4 over a 16-minute scan, and the corresponding Allan time increases up to 10 seconds, as opposed to an open loop value of 1 second. Our experiments also demonstrate that the receiver sensitivity is limited by the intermediate frequency chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1421
Permanent link to this record
 

 
Author Edward Tong, C.-Y.; Loudkov, Denis N.; Paine, Scott N.; Marrone, Dan P.; Blundell, Raymond
Title Vector measurement of the beam pattern of a 1.5 THz superconducting HEB receiver Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume (down) Issue Pages 453-456
Keywords NbTiN HEB mixers
Abstract Near-field vector beam pattern of the 1.5 THz superconducting Hot Electron Bolometer (HEB) receiver currently in operation in Northern Chile has been performed in our laboratory. Using an open waveguide probe, we have mapped both the amplitude and phase of the beam emerging from our 1.5 THz HEB receiver package, across a number of planes along the line of propagation of the radio-beam. With an integration time of about 100 ms per point, a signal-to-noise ratio of about 25 dB was achieved for a beam waist of 3.5 mm. These measurements have proved to be invaluable in achieving good alignment between the cryostat housing the HEB mixer and the remainder of the receiver and telescope optics. The accuracy of our beam measurement is estimated to be ±0.2 mm in position and ±5 arc minutes in angular displacement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1474
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Meledin, Denis; Blundell, Raymond; Erickson, Neal; Kawamura, Jonathan; Mehdi, Imran; Gol'tsman, Gregory
Title A 1.5 THz hot-electron bolometer mixer operated by a planar diode-based local oscillator Type Abstract
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume (down) Issue Pages 286
Keywords waveguide NbN HEB mixers
Abstract We describe a 1.5 THz heterodyne receiver based on a superconductin g hot-electron bolometer mixer, which is pumped by an all-solid-state local oscillator chain. The bolometer is fabricated from a 3.5 nm-thick niobium nitride film deposited on a quartz substrate with a 200 nm-thick magnesium oxide buffer layer. The bolometer measures 0.15 fun in width and 1.5 1..tm in length. The chip consisting of the bolometer and mixer circuitry is incorporated in a fixed-tuned waveguide mixer block with a corru g ated feed horn. The local oscillator unit comprises of a cascade of four planar doublers followin g a MMIC-based W-band power amplifier. The local oscillator is coupled to the mixer using a Martin-Puplett interferometer. The local oscillator output power needed for optimal receiver performance is approximately 1 to 2 11W, and the chain is able to provide this power at a number of frequency points between 1.45 and 1.56 THz. By terminating the rf input with room temperature and 77 K loads, a Y-factor of 1.11 (DSB) has been measured at a local oscillator frequency of 1.476 THz at 3 GHz intermediate frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1501
Permanent link to this record