toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. url  openurl
  Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum  
  Volume Issue Pages  
  Keywords PNR SSPD, SNSPD  
  Abstract (down) We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no  
  Call Number RPLAB @ sasha @ korneevsuperconducting Serial 1046  
Permanent link to this record
 

 
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. url  doi
openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 246-251  
  Keywords SSPD, SNSPD  
  Abstract (down) We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 431  
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R. url  doi
openurl 
  Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
  Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 54 Issue 2-3 Pages 315-326  
  Keywords NbN SSPD, SNSPD  
  Abstract (down) We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1434  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G. url  doi
openurl 
  Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713828 (1 to 5)  
  Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared  
  Abstract (down) We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/12.818079 Serial 1241  
Permanent link to this record
 

 
Author Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, Roman url  openurl
  Title Ultrafast NBN hot-electron single-photon detectors for electronic applications Type Abstract
  Year 2002 Publication Abstracts 8-th IUMRS-ICEM Abbreviated Journal Abstracts 8-th IUMRS-ICEM  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract (down) We present a new, simple to manufacture, single-photon detector (SPD), which can work from ultraviolet to near-infrared wavelengths of optical radiation and combines high speed of operation, high quantum efficiency (QE), and very low dark counts. The devices are superconducting and operate at temperature below 5 K. The physics of operation of our SPD is based on formation of a photon-induced resistive hotspot and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 8th IUMRS International Conference on Electronic Materials  
  Notes Approved no  
  Call Number Serial 1532  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: