toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G. url  openurl
  Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
  Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no  
  Call Number Serial 1751  
Permanent link to this record
 

 
Author Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N. url  openurl
  Title IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
  Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 5 Pages  
  Keywords SSPD, SNSPD  
  Abstract (up) We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 8 pages Approved no  
  Call Number RPLAB @ sasha @ korneevir Serial 1043  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R. url  doi
openurl 
  Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5732 Issue Pages 520-529  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Sensing and Nanophotonic Devices II  
  Notes Approved no  
  Call Number Serial 1478  
Permanent link to this record
 

 
Author Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol’tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 571-574  
  Keywords NbN SSPD, SNSPD, QE, NEP  
  Abstract (up) We present our studies on the quantum efficiency (QE) and the noise equivalent power (NEP) of the latest-generation, nanostructured, superconducting, single-photon detectors (SSPDs) in the wavelength range from 0.5 to 5.6 /spl mu/m, operated at temperatures in the 2.0- to 4.2-K range. Our detectors are designed as 4-nm-thick and 100-nm-wide NbN meander-shaped stripes, patterned by electron-beam lithography and cover a 10/spl times/10-/spl mu/m/sup 2/ active area. The best-achieved QE at 2.0 K for 1.55-/spl mu/m photons is 17%, and QE for 1.3-/spl mu/m infrared photons reaches its saturation value of /spl sim/30%. The SSPD NEP at 2.0 K is as low as 5/spl times/10/sup -21/ W/Hz/sup -1/2/. Our nanostructured SSPDs, operated at 2.0 K, significantly outperform their semiconducting counterparts, and, together with their GHz counting rate and picosecond timing jitter, they are devices-of-choice for practical quantum key distribution systems and free-space (even interplanetary) quantum optical communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1467  
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Voronov, B.; Okunev, O.; Smirnov, K.; Gol’tsman, G.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R.; Slysz, W. url  doi
openurl 
  Title Superconducting nanostructures for counting of single photons in the infrared range Type Conference Article
  Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL  
  Volume 2 Issue Pages 100-103  
  Keywords SSPD, SNSPD  
  Abstract (up) We present our studies on ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs are patterned by electron beam lithography from 4-nm thick NbN film into meander-shaped strips covering square area of 10/spl times/10 /spl mu/m/sup 2/. The advances in the fabrication technology allowed us to produce highly uniform 100-120-nm-wide strips with meander filling factor close to 0.6. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, an avalanche of excited hot electrons and the biasing supercurrent, jointly produce a picosecond voltage transient response across the superconducting nanostrip. The SSPDs are typically operated at 4.2 K, but they have shown that their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by optical absorption of our 4-nm-thick NbN film. For 1.55 /spl mu/m photons, QE was /spl sim/20% and decreases exponentially with the increase of the optical wavelength, but even at the wavelength of 6 /spl mu/m the detector remains sensitive to single photons and exhibits QE of about 10/sup -2/%. The dark (false) count rate at 2 K is as low as 2 /spl times/ 10/sup -4/ s/sup -1/, what makes our detector essentially a background-limited sensor. The very low dark-count rate results in the noise equivalent power (NEP) as low as 10/sup -18/ WHz/sup -1/2/ for the mid-infrared range (6 /spl mu/m). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for the other, lower-T/sub c/ superconductors with the narrow superconducting gap and low quasiparticle diffusivity. The use of such materials will shift the cutoff wavelength towards the values even longer than 6 /spl mu/m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers  
  Notes Approved no  
  Call Number Serial 1461  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: