|   | 
Details
   web
Records
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G.
Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate
Volume Issue (up) Pages
Keywords NbN SSPD, SNSPD
Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no
Call Number Serial 1751
Permanent link to this record
 

 
Author Sergeev, A.; Karasik, B. S.; Ptitsina, N. G.; Chulkova, G. M.; Il'in, K. S.; Gershenzon, E. M.
Title Electron–phonon interaction in disordered conductors Type Journal Article
Year 1999 Publication Phys. Rev. B Condens. Matter Abbreviated Journal Phys. Rev. B Condens. Matter
Volume 263-264 Issue (up) Pages 190-192
Keywords disordered conductors, electron-phonon interaction
Abstract The electron–phonon interaction is strongly modified in conductors with a small value of the electron mean free path (impure metals, thin films). As a result, the temperature dependencies of both the inelastic electron scattering rate and resistivity differ significantly from those for pure bulk materials. Recent complex measurements have shown that modified dependencies are well described at K by the electron interaction with transverse phonons. At helium temperatures, available data are conflicting, and cannot be described by an universal model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1765
Permanent link to this record
 

 
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R.
Title Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue (up) 1 Pages 574-577
Keywords NbN SSPD, SNSPD
Abstract A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1547
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.
Title Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 151 Issue (up) 1-2 Pages 591-596
Keywords NbN SSPD, SNSPD
Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1244
Permanent link to this record
 

 
Author Semenov, A. V.; Devyatov, I. A.; Ryabchun, S. A.; Maslennikov, S. N.; Maslennikova, A. S.; Larionov, P. A.; Voronov, B. M.; Chulkova, G. M.
Title Absorption of terahertz electromagnetic radiation in dirty superconducting film at arbitrary type of the spectral functions Type Journal Article
Year 2011 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue (up) 10 Pages
Keywords terahertz electromagnetic radiation; superconductors; detectors of terahertz range
Abstract A problem of absorption of high-frequency electromagnetic field in dirty superconductor is treated within Keldysh technic. Expression for the source term in the kinetic equation for quasiparticle distribution function is derived. The result is significant for deriving a consistent microscopic theory of superconducting detectors for terahertz frequency range, perspective detectors on kinetic inductance of current-biased superconducting strip and on Josephson inductance of tunnel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 7 pages Approved no
Call Number Serial 1117
Permanent link to this record