|   | 
Details
   web
Records
Author Anant, Vikas; Kerman, Andrew J.; Dauler, Eric A.; Yang, Joel K. W.; Rosfjord, Krist.ine M.; Berggren, Karl K.
Title Optical properties of superconducting nanowire single-photon detectors Type Journal Article
Year 2008 Publication Optics Express Abbreviated Journal Opt. Express
Volume 16 Issue 14 Pages 10750
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 413
Permanent link to this record
 

 
Author Hu, Xiaolong; Dauler, Eric A.; Kerman, Andrew J.; Yang, Joel K. W.; White, James E.; Herder, Charles H.; Berggren, Karl K.
Title Using surface plasmons to enhance the speed and efficiency of superconducting nanowire single-photon detectors Type Conference Article
Year 2009 Publication Proceedings of the Conference on Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference Abbreviated Journal Proc of Conf. on Lasers and El.-Opt.
Volume Issue Pages 1-2
Keywords (up) optical antennas
Abstract We report our design and fabrication of superconducting nanowire single-photon detectors integrated with gold plasmonic nanostructures, which can enhance the absorption of TM-polarized light, and can enlarge the effective area without sacrificing detector speed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 744
Permanent link to this record
 

 
Author Hu, Xiaolong; Dauler, Eric A.; Molnar, Richard J.; Berggren, Karl K.
Title Superconducting nanowire single-photon detectors integrated with optical nano-antennae Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 1 Pages 17-31
Keywords (up) optical antennas
Abstract Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 745
Permanent link to this record
 

 
Author Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl
Title Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2 Pages 364-373
Keywords (up) PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency
Abstract A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 700
Permanent link to this record
 

 
Author Marsili, Francesco; Najafi, Faraz; Dauler, Eric; Bellei, Francesco; Hu, Xiaolong; Csete, Maria; Molnar, Richard J.; Berggren, Karl K.
Title Single-photon detectors based on ultranarrow superconducting nanowires Type Journal Article
Year 2011 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 11 Issue 5 Pages 2048–2053
Keywords (up) SNSPD
Abstract We report efficient single-photon detection (η = 20% at 1550 nm wavelength) with ultranarrow (20 and 30 nm wide) superconducting nanowires, which were shown to be more robust to constrictions and more responsive to 1550 nm wavelength photons than standard superconducting nanowire single-photon detectors, based on 90 nm wide nanowires. We also improved our understanding of the physics of superconducting nanowire avalanche photodetectors, which we used to increase the signal-to-noise ratio of ultranarrow-nanowire detectors by a factor of 4, thus relaxing the requirements on the read-out circuitry and making the devices suitable for a broader range of applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 659
Permanent link to this record