toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gol’tsman, G.; Korneev, A.; Tarkhov, M.; Seleznev, V.; Divochiy, A.; Minaeva, O.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K. url  doi
openurl 
  Title Middle-infrared ultrafast superconducting single photon detector Type Conference Article
  Year 2007 Publication 32nd IRMW / 15th ICTE Abbreviated Journal 32nd IRMW / 15th ICTE  
  Volume Issue Pages 115-116  
  Keywords SSPD, SNSPD  
  Abstract We present the results of the research on quantum efficiency of the ultrathin-film superconducting single-photon detectors (SSPD) in the wavelength rage from 1 mum to 5.7 mum. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of ~1 % at 5.7 mum wavelength with the SSPD made from 4-nm-thick NbN film. In a pursuit of further performance improvement we endeavored SSPD fabricating from 4-nm-thick MoRe film as an alternative material. The MoRe film exhibited transition temperature of 7.7K, critical current density at 4.2 K temperature was 1.1times10 6 A/cm 2 , and diffusivity 1.73 cmVs. The single-photon response was observed with MoRe SSPD at 1.3 mum wavelength with quantum efficiency estimated to be 0.04%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1246  
Permanent link to this record
 

 
Author (up) Kitaygorsky, J.; Komissarov, I.; Jukna, A.; Pan, D.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.R. url  doi
openurl 
  Title Dark counts in nanostructured nbn superconducting single-photon detectors and bridges Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 275-278  
  Keywords SSPD; SNSPD  
  Abstract We present our studies on dark counts, observed as transient voltage pulses, in current-biased NbN superconducting single-photon detectors (SSPDs), as well as in ultrathin (~4 nm), submicrometer-width (100 to 500 nm) NbN nanobridges. The duration of these spontaneous voltage pulses varied from 250 ps to 5 ns, depending on the device geometry, with the longest pulses observed in the large kinetic-inductance SSPD structures. Dark counts were measured while the devices were completely isolated (shielded by a metallic enclosure) from the outside world, in a temperature range between 1.5 and 6 K. Evidence shows that in our two-dimensional structures the dark counts are due to the depairing of vortex-antivortex pairs caused by the applied bias current. Our results shed some light on the vortex dynamics in 2D superconductors and, from the applied point of view, on intrinsic performance of nanostructured SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1248  
Permanent link to this record
 

 
Author (up) Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R. url  openurl
  Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
  Year 2007 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting  
  Volume 52 Issue 1 Pages L9.00013  
  Keywords  
  Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1027  
Permanent link to this record
 

 
Author (up) Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N. url  openurl
  Title IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
  Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 5 Pages  
  Keywords SSPD, SNSPD  
  Abstract We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 8 pages Approved no  
  Call Number RPLAB @ sasha @ korneevir Serial 1043  
Permanent link to this record
 

 
Author (up) Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N. doi  openurl
  Title Characterization of MoSi superconducting single-photon detectors in the magnetic field Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2200504 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2015 Serial 991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: