toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D. url  doi
openurl 
  Title Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
  Year 2015 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 49 Issue 13 Pages 1749-1753  
  Keywords carbon nanotubes, CNT detectors  
  Abstract (up) The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1783  
Permanent link to this record
 

 
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
  Year 2016 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 50 Issue 12 Pages 1600-1603  
  Keywords carbon nanotubes, CNT detectors  
  Abstract (up) Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1776  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 103 Issue Pages 10004 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract (up) We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1351  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Ibragimov, R. A.; Stepanova, T. S.; Gazaliev, A. S.; Vysochanskiy, N. A.; Bobrov, Y. A.; Malovichko, A. M.; Sosnin, I. M.; Bobrinetskiy, I. I. url  doi
openurl 
  Title Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles Type Journal Article
  Year 2016 Publication Chem. Ind. Belgrade Abbreviated Journal Chem. Ind. Belgrade  
  Volume 70 Issue 1 Pages 1-8  
  Keywords carbon nanotubes, CNT, reverse micelles  
  Abstract (up) We report on a method of synthesis of single-walled carbon nanotubes percolated networks on silicon dioxide substrates using monodisperse Co and Ni catalyst. The catalytic nanoparticles were obtained by modified method of reverse micelles of bis-(2-ethylhexyl) sulfosuccinate sodium in isooctane solution that provides the nanoparticle size control in range of 1 to 5 nm. The metallic nanoparticles of Ni and Co were characterized using transmission electron microscopy (TEM) and atomic-force microscopy (AFM). Carbon nanotubes were synthesized by chemical vapor deposition of CH4/H2 composition at temperature 1000 °С on catalysts pre-deposited on silicon dioxide substrate. Before temperature treatment during the carbon nanotube synthesis most of the catalyst material agglomerates due to magnetic forces while during the nanotube growth disintegrates into the separate nanoparticles with narrow diameter distribution. The formed nanotube networks were characterized using AFM, scanning electron microscopy (SEM) and Raman spectroscopy. We find that the nanotubes are mainly single-walled carbon nanotubes with high structural perfection up to 200 μm long with diameters from 1.3 to 1.7 nm consistent with catalyst nanoparticles diameter distribution and independent of its material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0367-598X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1779  
Permanent link to this record
 

 
Author Matyushkin, Y. E.; Gayduchenko, I. A.; Moskotin, M. V.; Goltsman, G. N.; Fedorov, G. E.; Rybin, M. G.; Obraztsova, E. D. url  doi
openurl 
  Title Graphene-layer and graphene-nanoribbon FETs as THz detectors Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051054  
  Keywords field-effect transistor, FET, monolayer graphene, graphene nanoribbons  
  Abstract (up) We report on detection of sub-THz radiation (129-430 GHz) using graphene based asymmetric field-effect transistor (FET) structures with different channel geometry: monolayer graphene, graphene nanoribbons. In all devices types we observed the similar trends of response on sub-THz radiation. The response fell with increasing frequency at room temperature, but increased with increasing frequency at 77 K. Our calculations show that the change in the trend of the frequency dependence at 77 K is associated with the appearance of plasma waves in the graphene channel. Unusual properties of p-n junctions in graphene are highlighted using devices of special geometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1300  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: