Records |
Author |
Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D. |
Title |
Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers |
Type |
Journal Article |
Year |
2015 |
Publication |
Semicond. |
Abbreviated Journal |
Semicond. |
Volume |
49 |
Issue |
13 |
Pages |
1749-1753 |
Keywords |
carbon nanotubes, CNT detectors |
Abstract |
The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1063-7826 |
ISBN |
|
Medium |
|
Area  |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1783 |
Permanent link to this record |
|
|
|
Author |
Emelianov, A. V.; Nekrasov, N. P.; Moskotin, M. V.; Fedorov, G. E.; Otero, N.; Romero, P. M.; Nevolin, V. K.; Afinogenov, B. I.; Nasibulin, A. G.; Bobrinetskiy, I. I. |
Title |
Individual SWCNT transistor with photosensitive planar junction induced by two‐photon oxidation |
Type |
Journal Article |
Year |
2021 |
Publication |
Adv. Electron. Mater. |
Abbreviated Journal |
Adv. Electron. Mater. |
Volume |
7 |
Issue |
3 |
Pages |
2000872 |
Keywords |
SWCNT transistors |
Abstract |
The fabrication of planar junctions in carbon nanomaterials is a promising way to increase the optical sensitivity of optoelectronic nanometer-scale devices in photonic connections, sensors, and photovoltaics. Utilizing a unique lithography approach based on direct femtosecond laser processing, a fast and easy technique for modification of single-walled carbon nanotube (SWCNT) optoelectronic properties through localized two-photon oxidation is developed. It results in a novel approach of quasimetallic to semiconducting nanotube conversion so that metal/semiconductor planar junction is formed via local laser patterning. The fabricated planar junction in the field-effect transistors based on individual SWCNT drastically increases the photoresponse of such devices. The broadband photoresponsivity of the two-photon oxidized structures reaches the value of 2 × 107 A W−1 per single SWCNT at 1 V bias voltage. The SWCNT-based transistors with induced metal/semiconductor planar junction can be applied to detect extremely small light intensities with high spatial resolution in photovoltaics, integrated circuits, and telecommunication applications. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2199-160X |
ISBN |
|
Medium |
|
Area  |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1843 |
Permanent link to this record |