|   | 
Details
   web
Records
Author Eletskii, A. V.; Sarychev, A. K.; Boginskaya, I. A.; Bocharov, G. S.; Gaiduchenko, I. A.; Egin, M. S.; Ivanov, A. V.; Kurochkin, I. N.; Ryzhikov, I. A.; Fedorov, G. E.
Title (up) Amplification of a Raman scattering signal by carbon nanotubes Type Journal Article
Year 2018 Publication Dokl. Phys. Abbreviated Journal Dokl. Phys.
Volume 63 Issue 12 Pages 496-498
Keywords carbon nanotubes, CNT, Raman scattering, RLS
Abstract The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1028-3358 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1775
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.
Title (up) Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue Pages 012143 (1 to 6)
Keywords carbon nanotubes, CNT
Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1336
Permanent link to this record
 

 
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N.
Title (up) Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
Year 2016 Publication Semicond. Abbreviated Journal Semicond.
Volume 50 Issue 12 Pages 1600-1603
Keywords carbon nanotubes, CNT detectors
Abstract Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1776
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title (up) Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10004 (1 to 2)
Keywords SSPD, SNSPD
Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1351
Permanent link to this record
 

 
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D.
Title (up) Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
Year 2015 Publication Semicond. Abbreviated Journal Semicond.
Volume 49 Issue 13 Pages 1749-1753
Keywords carbon nanotubes, CNT detectors
Abstract The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1783
Permanent link to this record