toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume (up) 103 Issue Pages 10004 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1351  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G. url  doi
openurl 
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
  Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume (up) 103 Issue 18 Pages 181121 (1 to 5)  
  Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate  
  Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1171  
Permanent link to this record
 

 
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume (up) 103 Issue Pages 10003 (1 to 2)  
  Keywords graphene field-effect transistor, FET  
  Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1350  
Permanent link to this record
 

 
Author Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D. url  doi
openurl 
  Title Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors Type Journal Article
  Year 2018 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume (up) 112 Issue 14 Pages 141101 (1 to 5)  
  Keywords graphene field effect transistors, FET  
  Abstract Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

D.A.B. acknowledges the Leverhulme Trust for financial support. The work of D.S. was supported by Grant No. 16-19-10557 of the Russian Scientific Foundation (theoretical model). G.F., I.G., M.M., and G.G. acknowledge the Russian Science Foundation [Grant No. 14-19-01308 (MIET, cryostat upgrade) and Grant No. 17-72-30036, (MSPU, photoresponse measurements), the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007 (device fabrication) and Task No. 3.7328.2017/LS (NEP analyses)] and the Russian Foundation for Basic Research [Grant No. 15-02-07841 (device design)]. The authors are grateful to Professor M. S. Shur for helpful discussions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1309  
Permanent link to this record
 

 
Author Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G. url  doi
openurl 
  Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
  Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume (up) 118 Issue 19 Pages 194303  
  Keywords terahertz detectors, asymmetric carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1169  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: