toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Golikov, A.; Kovalyuk, V.; An, P.; Zubkova, E.; Ferrari, S.; Pernice, W.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Silicon nitride nanophotonic circuit for on-chip spontaneous four-wave mixing Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051051  
  Keywords O-ring resonator  
  Abstract Here we present an integrated nanophotonic circuit for on-chip spontaneous four-wave mixing. The fabricated device includes an O-ring resonator, a Bragg noch-filter as well as a nine-channel arrayed waveguide gratings (AWG) operated in the C-band wavelength range (1550 nm). The measured optical losses of the device (-6.8 dB) as well as a high Q-factor (> 1.2×105) shows a good potential for realizing the spontaneous four-wave mixing on the silicon nitride chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1193  
Permanent link to this record
 

 
Author Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Optimization of contra-directional coupler based on silicon nitride Bragg rib waveguide Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051048  
  Keywords Bragg waveguide, Si3N4  
  Abstract We report on the development and fabrication of a contra-directional coupler based on the Bragg waveguide on Si3N4 platform. Transmitted and reflected by the contra-directional coupler spectra were measured. The reflected spectra exactly matches the one notched by the main channel of the coupler. Losses are about 3dB, coupling to the directing branch of the coupler is practically lossless. FWHM of the transmitted (reflected) spectra is 3.46 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1195  
Permanent link to this record
 

 
Author Prokhodtsov, A.; An, P.; Kovalyuk, V.; Zubkova, E.; Golikov, A.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Optimization of on-chip photonic delay lines for telecom wavelengths Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051052  
  Keywords optical delay lines  
  Abstract In this work, we experimentally studied optical delay lines on silicon nitride platform for telecomm wavelength (1550 nm). We modeled the group delay time and fabricated spiral optical delay lines with different waveguide widths and radii as well as measured their transmission. For the half etched rib waveguides we achieved the losses in the range of 3 dB/cm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1196  
Permanent link to this record
 

 
Author Kovalyuk, V.; Kahl, O.; Ferrari, S.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  doi
openurl 
  Title On-chip single-photon spectrometer for visible and infrared wavelength range Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051045  
  Keywords single-photon spectrometer  
  Abstract Here we show our latest progress in the field of a single-photon spectrometer for the visible and infrared wavelengths ranges implementation. We consider three different on-chip approaches: a coherent spectrometer with a low power of the heterodyne, a coherent spectrometer with a high power of the heterodyne, and an eight-channel single-photon spectrometer for direct detection. Along with high efficiency, spectrometers show high detection efficiency and temporal resolution through the use of waveguide integrated superconducting nanowire single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1197  
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G. doi  openurl
  Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
  Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep  
  Volume 7 Issue 1 Pages 4812  
  Keywords waveguide, SSPD, SNSPD  
  Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.  
  Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28684752; PMCID:PMC5500578 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1129  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: