|   | 
Details
   web
Records
Author Kovalyuk, V.; Kahl, O.; Ferrari, S.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title On-chip single-photon spectrometer for visible and infrared wavelength range Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051045
Keywords single-photon spectrometer
Abstract Here we show our latest progress in the field of a single-photon spectrometer for the visible and infrared wavelengths ranges implementation. We consider three different on-chip approaches: a coherent spectrometer with a low power of the heterodyne, a coherent spectrometer with a high power of the heterodyne, and an eight-channel single-photon spectrometer for direct detection. Along with high efficiency, spectrometers show high detection efficiency and temporal resolution through the use of waveguide integrated superconducting nanowire single-photon detectors.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1197
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; An, P.; Golikov, A.; Zubkova, E.; Ferrari, S.; Kahl, O.; Pernice, W.; Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Superconducting single-photon detector for integrated waveguide spectrometer Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 04009
Keywords SSPD, SNSPD, Si3N4 waveguides, waveguide spectrometer
Abstract We present our recent achievements in the development of an on-chip spectrometer consisting of arrayed waveguide grating made of Si3N4 waveguides and NbN superconducting single-photon detector.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1199
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material Type Miscellaneous
Year 2017 Publication Optica Abbreviated Journal
Volume Issue Pages 1-9
Keywords Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution
Abstract This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers.
Address
Corporate Author Thesis (up)
Publisher Osa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Kahl:17 Serial 1218
Permanent link to this record
 

 
Author Goltsman, G. N.; Shcherbatenko, M. L.; Lobanov, Y. V.; Kovalyuk, V. V.; Kahl, O.; Ferrari, S.; Korneev, A.; Pernice, W. H. P.
Title Superconducting nanowire single photon detector for coherent detection of weak optical signals Type Abstract
Year 2016 Publication LPHYS'16 Abbreviated Journal LPHYS'16
Volume Issue Pages 1-2
Keywords SSPD, SNSPD
Abstract Traditionally, photon detectors are operated in a direct detection mode counting incident photonswith a known quantum efficiency. This procedure allows one to detect weak sources of radiation but allthe information about its frequency is limited by the optical filtering/resonating structures used which arenot as precise as would be required for some practical applications. In this work we propose heterodynereceiver based on a photon counting mixer which would combine excellent sensitivity of a photon countingdetector and excellent spectral resolution given by the heterodyne technique. At present, Superconducting-Nanowire-Single-Photon-Detectors (SNSPDs) [1] are widely used in a variety of applications providing thebest possible combination of the sensitivity and speed. SNSPDs demonstrate lack of drawbacks like highdark count rate or autopulsing, which are common for traditional semiconductor-based photon detectors,such as avalanche photon diodes.In our study we have investigated SNSPD operated as a photon counting mixer. To fully understandits behavior in such a regime, we have utilized experimental setup based on a couple of distributedfeedback lasers irradiating at 1.5 micrometers, one of which is being the Local Oscillator (LO) and theother mimics the test signal [2]. The SNSPD was operated in the current mode and the bias currentwas slightly below of the critical current. Advantageously, we have found that LO power needed for anoptimal mixing is of the order of hundreds of femtowatts to a few picowatts, which is promising for manypractical applications, such as receiver matrices [3]. With use of the two lasers, one can observe thevoltage pulses produced by the detected photons, and the time distribution of the pulses reproduces thefrequency difference between the lasers, forming power response at the intermediate frequency which canbe captured by either an oscilloscope (an analysis of the pulse statistics is needed) or by an RF spectrumanalyzer. Photon-counting nature of the detector ensures quantum-limited sensitivity with respect to theoptical coupling achieved. In addition to the chip SNSPD with normal incidence coupling, we use thedetectors with a travelling wave geometry design [4]. In this case a NbN nanowire is placed on the topof a Si3N4 nanophotonic waveguide, thus increasing the efficient interaction length. For this reason it ispossible to achieve almost complete absorption of photons and reduce the detector footprint. This reducesthe noise of the device together with the expansion of the bandwidth. Integrated device scheme allowsus to measure the optical losses with high accuracy. Our approach is fully scalable and, along with alarge number of devices integrated on a single chip can be adapted to the mid and far IR ranges wherephoton-counting measurement may be beneficial as well [5].Acknowledgements: This work was supported in part by the Ministry of Education and Science of theRussian Federation, contract No. 14.B25.31.0007 and by RFBR grant No. 16-32-00465.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1220
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Yu; Shcherbatenko, M.; Korneev, A; Pernice, W.; Goltsman, G.
Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type Conference Volume
Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 421-422
Keywords waveguide, SSPD, SNSPD
Abstract By adopting a travelling-wave geometry approach, integrated superconductor- nanophotonic devices were fabricated. The architecture consists of a superconducting NbN- nanowire atop of a silicon nitride (Si 3 N 4 ) nanophotonic waveguide. NbN-nanowire was operated as a single-photon counting detector, with up to 92% on-chip detection efficiency (OCDE), in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 10^6 in C-band at 1550 nm wavelength.
Address St. Petersburg, Russia
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1140 Approved no
Call Number Serial 1256
Permanent link to this record