|
Records |
Links |
|
Author |
Casaburi, A.; Ejrnaes, M.; Quaranta, O.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol'tsman, G.; Lisitskiy, M.; Esposito, E.; Nappi, C.; Cristiano, R.; Pagano, S. |
|
|
Title |
Experimental characterization of NbN nanowire optical detectors with parallel stripline configuration |
Type |
Conference Article |
|
Year |
2008 |
Publication |
J. Phys.: Conf. Ser. |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
|
|
Volume |
97 |
Issue |
|
Pages |
012265 (1 to 6) |
|
|
Keywords |
NbN SSPD, SNSPD |
|
|
Abstract |
We have developed a novel geometrical configuration for NbN-based superconducting single photon optical detector (SSPD) that achieves two goals: a much lower intrinsic impedance, and a consequently greater bandwidth, and a much larger signal amplitude compared to the standard meandered configuration. This has been obtained by implementing a properly designed parallel stripline structure where a cascade switching mechanism occurs when one of the striplines is hit by an optical photon. The overall switching occurs synchronously and in a very short time, giving rise to a strong and fast voltage pulse. The SSPD have been realized using state of the art NbN deposition technology and e-beam lithography. The strips are 100 nm wide and 5 μm long and have been realized with 4 nm NbN film on sapphire and Si substrate. We report on experimental characterization of such novel devices. The performances of the proposed novel type of SSPD are compared with standard SSPD design and results in terms of signal amplitude, risetime and effective detection area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOP Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1742-6596 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
8th European Conference on Applied Superconductivity (EUCAS 2007) |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1416 |
|
Permanent link to this record |
|
|
|
|
Author |
de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B. |
|
|
Title |
Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) |
Type |
Journal Article |
|
Year |
2008 |
Publication |
J. Low Temp. Phys. |
Abbreviated Journal |
J. Low Temp. Phys. |
|
|
Volume |
151 |
Issue |
3-4 |
Pages |
771-776 |
|
|
Keywords |
NbN SSPD, SNSPD, nanowires |
|
|
Abstract |
We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-2291 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1410 |
|
Permanent link to this record |
|
|
|
|
Author |
Ejrnaes, M.; Cristiano, R.; Quaranta, O.; Pagano, S.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol’tsman, G. |
|
|
Title |
A cascade switching superconducting single photon detector |
Type |
Journal Article |
|
Year |
2007 |
Publication |
Appl. Phys. Lett. |
Abbreviated Journal |
Appl. Phys. Lett. |
|
|
Volume |
91 |
Issue |
26 |
Pages |
262509 (1 to 3) |
|
|
Keywords |
SSPD, SNSPD, parallel-wire |
|
|
Abstract |
We have realized superconducting single photon detectors with reduced inductance and increased signal pulse amplitude. The detectors are based on a parallel connection of ultrathin NbN nanowires with a common bias inductance. When properly biased, an absorbed photon induces a cascade switch of all the parallel wires generating a signal pulse amplitude of 2mV. The parallel wire configuration lowers the detector inductance and reduces the response time well below 1ns.
This work was performed in the framework of the EU project “SINPHONIA” NMP4-CT-2005-016433. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-6951 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1418 |
|
Permanent link to this record |
|
|
|
|
Author |
Fiore, A.; Marsili, F.; Bitauld, D.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G. |
|
|
Title |
Counting photons using a nanonetwork of superconducting wires |
Type |
Conference Article |
|
Year |
2009 |
Publication |
Nano-Net |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
120-122 |
|
|
Keywords |
SSPD, SNSPD |
|
|
Abstract |
We show how the parallel connection of photo-sensitive superconducting nanowires can be used to count the number of photons in an optical pulse, down to the single-photon level. Using this principle we demonstrate photon-number resolving detectors with unprecedented sensitivity and speed at telecommunication wavelengths. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
Berlin, Heidelberg |
Editor |
Cheng, M. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
978-3-642-02427-6 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
10.1007/978-3-642-02427-6_20 |
Serial |
1242 |
|
Permanent link to this record |
|
|
|
|
Author |
Gaggero, A.; Nejad, S. Jahanmiri; Marsili, F.; Mattioli, F.; Leoni, R.; Bitauld, D.; Sahin, D.; Hamhuis, G. J.; Nötzel, R.; Sanjines, R.; Fiore, A. |
|
|
Title |
Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Applied Physics Letters |
Abbreviated Journal |
Appl. Phys. Lett. |
|
|
Volume |
97 |
Issue |
15 |
Pages |
3 |
|
|
Keywords |
SSPD |
|
|
Abstract |
We demonstrate efficient nanowire superconducting single photon detectors (SSPDs) based on NbN thin films grown on GaAs. NbN films ranging from 3 to 5 nm in thickness have been deposited by dc magnetron sputtering on GaAs substrates at 350 °C. These films show superconducting properties comparable to similar films grown on sapphire and MgO. In order to demonstrate the potential for monolithic integration, SSPDs were fabricated and measured on GaAs/AlAs Bragg mirrors, showing a clear cavity enhancement, with a peak quantum efficiency of 18.3% at λ = 1300 nm and T = 4.2 K. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ gujma @ |
Serial |
681 |
|
Permanent link to this record |