toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khosropanah, P.; Gao, J. R.; Laauwen, W. M.; Hajenius, M; Klapwijk, T. M. openurl 
  Title Low noise NbN hot electron bolometer mixer at 4.3 THz Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue Pages 221111 (1 to 3)  
  Keywords (down) NbN HEB mixers, NbN, contacts cleaning  
  Abstract We have studied the sensitivity of a superconducting NbN hot electron bolometer mixer integrated with a spiral antenna at 4.3 THz. Using hot/cold blackbody loads and a beam splitter all in vacuum, we measured a double sideband receiver noise temperature of 1300 K at the optimum local oscillator (LO) power of 330 nW, which is about 12 times the quantum noise (hnu/2kB). Our result indicates that there is no sign of degradation of the mixing process at the superterahertz frequencies. Moreover, a measurement method is introduced which allows us for an accurate determination of the sensitivity despite LO power fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 584  
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte 2, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Increased bandwidth of NbN phonon cooled hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 381-386  
  Keywords (down) NbN HEB mixers, IF bandwidth  
  Abstract We study experimentally the IF gain bandwidth of NbN phonon-cooled hot-electron-bolometer (HEB) mixers for a set of devices with different contact structures but an identical NbN film. We observe that the IF bandwidth depends strongly on the exact contact structure and find an IF gain bandwidth of 6 GHz for a device with an additional superconducting layer (NbTiN) in between the active NbN film and the gold contact to the antenna. These results contradict the common opinion that the IF bandwidth is determined by the phonon-escape time between the NbN film and the substrate. Hence we calculate the IF gain bandwidth of a superconducting film using a two-temperature model. We find that the bandwidth increases strongly with operating temperature and is not limited by the phonon escape time. This is because of strong temperature dependence of the phonon specific heat in the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1494  
Permanent link to this record
 

 
Author Baryshev, A.; Baselmans, J. J. A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Vachtomin, Yu.; Maslennikov, S.; Antipov, S.; Voronov, B.; Gol'tsman, G. url  openurl
  Title Direct detection effect in hot electron bolometer mixers Type Abstract
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 463-464  
  Keywords (down) NbN HEB mixers, effect of direct detection, direct detection effect  
  Abstract NbN phonon cooled hot electron bolometer (HEB) mixers are currently the most sensitive heterodyne detectors at frequencies above 1.2 THz. They combine a good sensitivity (8-15 times the quantum limit), an IF bandwidth of the order of 4-6 GHz and a wide RF bandwidth from 0.7-5.2 THz. However, for use in a space based observatory, such as Herschel, it is of vital importance that the Local Oscillator (LO) power requirement of the mixer is compatible with the low output power of present day THz LO sources. This can be achieved by reducing the mixer volume and critical current. However, the large RF bandwidth and low LO power requirement of such a mixer result in a direct detection effect, characterized by a change in the bias current of the HEB when changing the RF signal from a black body load at 300 K to one at 77 K. As a result the measured sensitivity using a 300 K and 77 K calibration load differs significantly from the small signal sensitivity relevant for astronomical observations. In this article we describe a set of dedicated experiments to characterize the direct detection effect for a small volume quasi-optical NbN phonon cooled HEB mixer. We measure the direct detection effect in a small volume (0.15 μm · 1 μm · 3.5 nm) quasi- optical NbN phonon cooled HEB mixer at 1.6 THz. We found that the small signal sensitivity of the receiver is underestimated by approximately 35% due to the direct detection effect and that the optimal operating point is shifted to higher bias voltages when using calibration loads of 300 K and 77 K. Using a 200 GHz wide band-pass filter at the 4.2 K the direct detection effect virtually disappears. Heterodyne response measurements using water vapor absorption line in a gas cell confirms the existence and a magnitude of a direct detection effect. We also propose a theoretical explanation using uniform electron heating model. This direct detection effect has important implications for the calibration procedure of these receivers in real telescope systems. We are developing Nb HEBs for a large-format, diffusion-cooled hot electron bolometer (HEB) array submillimeter camera. The goal is to produce a 64 pixel array together with the University of Arizona to be used on the HHT on Mt Graham. It is designed to detect in the 850 GHz atmospheric window. We have fabricated Nb HEBs using a new angle- deposition process, which had previously produced high quality Nb-Au bilayer HEB devices at Yale. [1] We have characterized these devices using heterodyne mixing at ~30 GHz to compare to 345 GHz tests at the University of Arizona. We can also directly compare our Nb HEB mixers to SIS mixers in this same 345 GHz system. This allows us to rigorously calibrate the system’s losses and extract the mixer noise temperature in a well characterized mixer block, before undertaking the 850 GHz system. Here we give a report on the initial devices we have fabricated and characterized. * Department of Applied Physics, Yale University ** Department of Astronomy, University of Arizona [1] Applied Physics Letters 84, Number 8; p.1404-7, Feb 23 (2004)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1475  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. url  openurl
  Title NbN hot electron bolometer mixers with superior performance for space applications Type Conference Article
  Year 2004 Publication Proc. Int. workshop on low temp. electronics Abbreviated Journal Proc. Int. workshop on low temp. electronics  
  Volume Issue Pages 11-17  
  Keywords (down) NbN HEB mixers, applications  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Noordwijk Editor Armandillo, E.; Leone, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International workshop on low temperature electronics- WOLTE 6 - Noordwijk  
  Notes Approved no  
  Call Number Serial 1496  
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
  Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 17 Issue 5 Pages S224-S228  
  Keywords (down) NbN HEB mixers  
  Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 558  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: