|   | 
Details
   web
Records
Author Klapwijk, T. M.; Barends, R.; Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.
Title Improved superconducting hot-electron bolometer devices for the THz range Type (up) Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 129-139
Keywords HEB mixer distributed model, numerical model
Abstract Improved and reproducible heterodyne mixing (noise temperatures of 950 K at 2.5 THz) has been realized with NbN based hot-electron superconducting devices with low contact resistances. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, has been used to understand the physical conditions during the mixing process. We find that the mixing is predominantly due to the exponential rise of the local resistivity as a function of electron temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Invited talk, Recommended by Klapwijk Approved no
Call Number Serial 912
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of superconducting hot electron bolometers Type (up) Conference Article
Year 2013 Publication Not published results: 24th international symposium on space terahertz technology Abbreviated Journal
Volume Issue Pages
Keywords HEB
Abstract
Address Groningen,The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1067
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Voronov, B.; Grishina, E.; Klapwijk, T. M.; Gol'tsman, G.; Zorman, C. A.
Title Can NbN films on 3C-SiC/Si change the IF bandwidth of hot electron bolometer mixers? Type (up) Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 187-189
Keywords NbN HEB mixers
Abstract We realized ultra thin NbN films sputtered grown on a 3C-SiC/Si substrate. The film with a thickness of 3.5-4.5 nm shows a 1', of 11.8 K, which is the highest I`, observed among ultra thin NbN films on different substrates. The high-resolution transmission electron microscopy (HRTEM) studies show that the film has a monocrystalline structure, confirming the epitaxial growth on the 3C-SiC. Based on a two-temperature model and input parameters from standard NbN films on Si, simulations predict that the new film can increase the IF bandwidth of a HEB mixer by about a factor of 2 in comparison to the standard films. In addition, we find standard NbN films on Si with a T c of 9.4 K have a thickness of around 5.5 nm, being thicker than expected (3.5 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1439
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Yang, Z. Q.; Baryshev, A. M.; Barends, R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.; Callaos, N.
Title Twin-slot antenna coupled NbN hot electron bolometer mixers for space applications Type (up) Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 148-153
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9806560639, 9789806560635 Medium
Area Expedition Conference 9th World Multi-Conference on Systemics, Cybernetics and Informatics
Notes Approved no
Call Number Serial 1480
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type (up) Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 17-24
Keywords NbN HEB mixers
Abstract We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1491
Permanent link to this record