|   | 
Details
   web
Records
Author Gayduchenko, I. A.; Fedorov, G. E.; Ibragimov, R. A.; Stepanova, T. S.; Gazaliev, A. S.; Vysochanskiy, N. A.; Bobrov, Y. A.; Malovichko, A. M.; Sosnin, I. M.; Bobrinetskiy, I. I.
Title Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles Type Journal Article
Year 2016 Publication Chem. Ind. Belgrade Abbreviated Journal Chem. Ind. Belgrade
Volume 70 Issue 1 Pages (up) 1-8
Keywords carbon nanotubes, CNT, reverse micelles
Abstract We report on a method of synthesis of single-walled carbon nanotubes percolated networks on silicon dioxide substrates using monodisperse Co and Ni catalyst. The catalytic nanoparticles were obtained by modified method of reverse micelles of bis-(2-ethylhexyl) sulfosuccinate sodium in isooctane solution that provides the nanoparticle size control in range of 1 to 5 nm. The metallic nanoparticles of Ni and Co were characterized using transmission electron microscopy (TEM) and atomic-force microscopy (AFM). Carbon nanotubes were synthesized by chemical vapor deposition of CH4/H2 composition at temperature 1000 °С on catalysts pre-deposited on silicon dioxide substrate. Before temperature treatment during the carbon nanotube synthesis most of the catalyst material agglomerates due to magnetic forces while during the nanotube growth disintegrates into the separate nanoparticles with narrow diameter distribution. The formed nanotube networks were characterized using AFM, scanning electron microscopy (SEM) and Raman spectroscopy. We find that the nanotubes are mainly single-walled carbon nanotubes with high structural perfection up to 200 μm long with diameters from 1.3 to 1.7 nm consistent with catalyst nanoparticles diameter distribution and independent of its material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0367-598X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1779
Permanent link to this record
 

 
Author Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A.
Title Response of carbon nanotube film transistor to the THz radiation Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue Pages (up) 05012 (1 to 2)
Keywords field-effect transistor, FET, carbon nanotube, CNT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1317
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.
Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue Pages (up) 012143 (1 to 6)
Keywords carbon nanotubes, CNT
Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1336
Permanent link to this record
 

 
Author Titova, N.; Gayduchenko, I. A.; Moskotin, M. V.; Fedorov, G. F.; Goltsman, G. N.
Title Carbon nanotube based terahertz radiation detectors Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages (up) 012208 (1 to 5)
Keywords carbon nanotubes, CNT
Abstract In this paper, we study terahertz detectors based on single quasimetallic carbon nanotubes (CNT) with asymmetric contacts and different metal pairs. We demonstrate that, depending on the contact metallization of the device, various detection mechanisms are manifested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1270
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E.
Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.
Volume 5 Issue 13 Pages (up) 27301-27306
Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor
Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1316
Permanent link to this record