|   | 
Details
   web
Records
Author Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; Watanabe, K.; Grigorieva, I. V.; Polini, M.; Goltsman, G. N.; Geim, A. K.; Fedorov, G.
Title Resonant terahertz detection using graphene plasmons Type Journal Article
Year 2018 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 9 Issue Pages 5392 (1 to 8)
Keywords THz, graphene plasmons
Abstract Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.
Address Physics Department, Moscow State University of Education (MSPU), Moscow, Russian Federation, 119435. fedorov.ge@mipt.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2041-1723 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1148
Permanent link to this record
 

 
Author Gayduchenko, I.; Xu, S. G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A. K.; Fedorov, G.; Svintsov, D.; Bandurin, D. A.
Title Tunnel field-effect transistors for sensitive terahertz detection Type Journal Article
Year 2021 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 12 Issue 1 Pages 543
Keywords field-effect transistors, bilayer graphene, BLG
Abstract The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here, we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG). Taking advantage of BLG's electrically tunable band structure, we create a lateral tunnel junction and couple it to an antenna exposed to THz radiation. The incoming radiation is then down-converted by the tunnel junction nonlinearity, resulting in high responsivity (>4 kV/W) and low-noise (0.2 pW/[Formula: see text]) detection. We demonstrate how switching from intraband Ohmic to interband tunneling regime can raise detectors' responsivity by few orders of magnitude, in agreement with the developed theory. Our work demonstrates a potential application of tunnel transistors for THz detection and reveals BLG as a promising platform therefor.
Address Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. bandurin@mit.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2041-1723 ISBN Medium
Area Expedition Conference
Notes PMID:33483488; PMCID:PMC7822863 Approved no
Call Number Serial 1261
Permanent link to this record
 

 
Author Gorokhov, G.; Bychanok, D.; Gayduchenko, I.; Rogov, Y.; Zhukova, E.; Zhukov, S.; Kadyrov, L.; Fedorov, G.; Ivanov, E.; Kotsilkova, R.; Macutkevic, J.; Kuzhir, P.
Title THz spectroscopy as a versatile tool for filler distribution diagnostics in polymer nanocomposites Type Journal Article
Year 2020 Publication Polymers (Basel) Abbreviated Journal Polymers (Basel)
Volume 12 Issue 12 Pages 3037 (1 to 14)
Keywords THz spectroscopy; nanocomposites, percolation threshold, time-domain spectroscopy, time-domain spectrometer, TDS
Abstract Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes. The THz peak of permittivity's imaginary part predicted by the applied model was experimentally shown for GNP-containing composites both below and above the percolation threshold. The physical nature of the peak was explained by the impact on filler particles excluded from the percolation network due to the peculiarities of filler distribution. Terahertz spectroscopy as a versatile instrument of filler distribution diagnostics is discussed.
Address Institute of Photonics, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2073-4360 ISBN Medium
Area Expedition Conference
Notes PMID:33353036; PMCID:PMC7767186 Approved no
Call Number Serial 1780
Permanent link to this record
 

 
Author Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A.
Title Response of carbon nanotube film transistor to the THz radiation Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue Pages 05012 (1 to 2)
Keywords field-effect transistor, FET, carbon nanotube, CNT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1317
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E.
Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.
Volume 5 Issue 13 Pages 27301-27306
Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor
Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2214-7853 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1316
Permanent link to this record