|   | 
Details
   web
Records
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume 10680 Issue (up) Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A.
Title Response of carbon nanotube film transistor to the THz radiation Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue (up) Pages 05012 (1 to 2)
Keywords field-effect transistor, FET, carbon nanotube, CNT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1317
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.
Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue (up) Pages 012143 (1 to 6)
Keywords carbon nanotubes, CNT
Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1336
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-THz radiation Type Abstract
Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.
Volume Issue (up) Pages 71
Keywords carbon nanotubes, CNT
Abstract This work reports on the voltage response of asymmetric carbon nanotube devices to sub-THz radiation at the frequency of 140 GHz. The devices contain CNT’s, which are over their length partially suspended and partially Van der Waals bonded to a SiO 2 substrate, causing a difference in thermal contact. Different heat sinking of CNTs by source and drain gives rise to temperature gradient and consequent thermoelectric power (TEP) as such a device is exposed to the sub-THz radiation. Sign of the DC signal, its power and gate voltage dependence observed at room temperature are consistent with this scenario. At liquid helium temperature the observed response is more complex. DC voltage signal of an opposite sign is observed in a narrow range of gate voltages at low temperatures and under low radiation power. We argue that this may indicate a true photovoltaic response from small gap (less than 10meV) CNT’s, an effect never reported before. While it is not clear if the observed effects can be used to develop efficient THz detectors we note that the responsivity of our devices exceeds that of CNT based devices in microwave or THz range reported before at room temperature. Besides at 4.2 K notable increase of the sample conductance (at least four-fold) is observed. Our recent results with asymmetric carbon nanotube devices response to THz radiation (2.5 THz) will also be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1361
Permanent link to this record
 

 
Author Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P.
Title Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors Type Journal Article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 87 Issue (up) Pages 330-337
Keywords carbon nanotubes, CNT detectors, field effect transistors, FET
Abstract Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1778
Permanent link to this record