toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 47 Issue 12 Pages 2519-2527  
  Keywords NbN HEB mixers  
  Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-9670 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1560  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Phonon-cooled hot-electron bolometric mixer: overview of recent results Type Journal Article
  Year 1999 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.  
  Volume 6 Issue 10-12 Pages 649-655  
  Keywords NbN HEB mixers  
  Abstract The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-1807 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1564  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4217-4220  
  Keywords NbN HEB mixers  
  Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1568  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Zhuang, Y.; Yngvesson, K. S.; Dickinson, J.; Goyette, T.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Improved characteristics of NbN HEB mixers integrated with log-periodic antennas Type Conference Article
  Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 200-207  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1574  
Permanent link to this record
 

 
Author Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 121-129  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: