|   | 
Details
   web
Records
Author Ekstrom, H.; Karasik, B.; Weikle, R.; Yngvesson, K. S.; Gol’tsman, G.; Kollberg, E.; Gershenzon, E.
Title Mixers using superconducting Nb films in the resistive state Type Conference Article
Year 1993 Publication (up) 23rd European Microwave Conf. Abbreviated Journal 23rd European Microwave Conf.
Volume Issue Pages 787-789
Keywords Nb HEB mixers
Abstract The mixing of 20 GHz radiation in a Nb superconducting film in the resistive state was studied. The experiment gave evidence of electron-heating to be the origin of the non-linear phenomenon. The requirements on the operation mode and on the film parameters in order to obtain small conversion losses or even gain are determined. Our measurements indicate a conversion loss of about 6-8 dB. The hot-electron bolometer is considered to be very promising for use in heterodyne receivers in a wide frequency range from microwaves to terahertz frequencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1651
Permanent link to this record
 

 
Author Kawamura, J.; Hunter, T. R.; Tong, C. Y. E.; Blundell, R.; Papa, D. C.; Patt, F.; Peters, W.; Wilson, T.; Henkel, C.; Goltsman, G.; Gershenzon, E.
Title Ground-based terahertz CO spectroscopy towards Orion Type Journal Article
Year 2002 Publication (up) A&A Abbreviated Journal A&A
Volume 394 Issue 1 Pages 271-274
Keywords HEB mixers, applications
Abstract Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO () spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, , high density molecular gas, , is quite extended, found along a ~ region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with and ≈ . The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 322
Permanent link to this record
 

 
Author Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M.
Title Optical mixing in a patterned YBa2Cu3O7-δ thin film Type Journal Article
Year 1994 Publication (up) Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 65 Issue 26 Pages 3398-3400
Keywords YBCO HTS HEB mixer, bandwidth
Abstract Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 251
Permanent link to this record
 

 
Author Ekstörm, H.; Kollberg, E.; Yagoubov, P.; Gol'tsman, G.; Gershenzon, E.; Yngvesson, S.
Title Gain and noise bandwidth of NbN hot-electron bolometric mixers Type Journal Article
Year 1997 Publication (up) Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 70 Issue 24 Pages 3296-3298
Keywords NbN HEB mixers, conversion loss, conversion gain, U-factor technique
Abstract We have measured the noise performance and gain bandwidth of 35 Å thin NbN hot-electron mixers integrated with spiral antennas on silicon substrate lenses at 620 GHz. The best double-sideband receiver noise temperature is less than 1300 K with a 3 dB bandwidth of ≈5 GHz. The gain bandwidth is 3.2 GHz. The mixer output noise dominated by thermal fluctuations is 50 K, and the intrinsic conversion gain is about −12 dB. Without mismatch losses and excluding the loss from the beamsplitter, we expect to achieve a receiver noise temperature of less than 700 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 279
Permanent link to this record
 

 
Author Il’in, K. S.; Milostnaya, I. I.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Sobolewski, R.
Title Ultimate quantum efficiency of a superconducting hot-electron photodetector Type Journal Article
Year 1998 Publication (up) Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 26 Pages 3938-3940
Keywords NbN SSPD, SNSPD
Abstract The quantum efficiency and current and voltage responsivities of fast hot-electron photodetectors, fabricated from superconducting NbN thin films and biased in the resistive state, have been shown to reach values of 340, 220 A/W, and 4×104 V/W,

respectively, for infrared radiation with a wavelength of 0.79 μm. The characteristics of the photodetectors are presented within the general model, based on relaxation processes in the nonequilibrium electron heating of a superconducting thin film. The observed, very high efficiency and sensitivity of the superconductor absorbing the photon are explained by the high multiplication rate of quasiparticles during the avalanche breaking of Cooper pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1579
Permanent link to this record