|   | 
Details
   web
Records
Author Gershenzon, E.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Heating of quasiparticles in a superconducting film in the resistive state Type Journal Article
Year 1981 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 34 Issue 5 Pages 268-271
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1716
Permanent link to this record
 

 
Author Chulcova, G. M.; Ptitsina, N. G.; Gershenzon, E. M.; Gershenzon, M. E.; Sergeev, A. V.
Title Effect of the interference between electron-phonon and electron-impurity (boundary) scattering on resistivity Nb, Al, Be films Type Conference Article
Year 1996 Publication Czech J. Phys. Abbreviated Journal Czech J. Phys.
Volume 46 Issue S5 Pages 2489-2490
Keywords (up) Al, Be, Nb films
Abstract The temperature dependence of the resistivity of thin Nb, Al, Be films has been studied over a wide temperature range 4-300 K. We have found that the temperature-dependent correction to the residual resistivity is well described by the sum of the Bloch-Grüneisen term and the term originating from the interference between electron-phonon and electron-impurity scattering. Study of the transport interference phenomena allows to determine electron-phonon coupling in disordered metals. The interference term is proportional to T2 and also to the residual resistivity and dominates over the Bloch-Grüneisen term at low temperatures (T<40 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-4626 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1767
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Nonselective effect of electromagnetic radiation on a superconducting film in the resistive state Type Journal Article
Year 1982 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 36 Issue 7 Pages 296-299
Keywords (up) HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Неселективное воздействие электромагнитного излучения на сверхпроводящую пленку в резистивном состоянии Approved no
Call Number Serial 1717
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Lulkin, A.; Semenov, A. D.; Sergeev, A. V.
Title Electron-phonon interaction in ultrathin Nb films Type Journal Article
Year 1990 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 70 Issue 3 Pages 505-511
Keywords (up) Nb films
Abstract A study was made of the heating of electrons in normal resistive states of superconducting thin Nb films. The directly determined relaxation time of the resistance of a sample and the rise of the electron temperature were used to find the electron-phonon interaction time rep,, The dependence of rep, on the mean free path of electrons re,, a 1-'demonstrated, in agreement with the theoretical predictions, that the contribution of the inelastic scattering of electrons by impurities to the energy relaxation process decreased at low temperatures and the observed temperature dependence rep, a T 2 was due to a modification of the phonon spectrum in thin fllms.

1. Much new information on the electron-phonon interaction time?;,, in thin films of normal metals and superconductors has been published recently. This information has been obtained mainly as a result of two types of measurement. One includes experiments on weak electron localization investigated by the method of quantum interference corrections to the conductivity of disordered conductors, which can be used to find the relaxation time T, of the phase of the electron wave function. In the absence of the scattering of electrons by paramagnetic impurities the relaxation time T, is associated with the most effective process of energy relaxation: T;= TL+ rep;, where T,, is the electronelectron relaxation time. At low temperatures, when the dependence T; a T is exhibited by thin disordered films, the dominant channel is that of the electron-electron relaxation and there is a lower limit to the temperature range in which rep, can be investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 241
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Heating of electrons in a superconductor in the resistive state by electromagnetic radiation Type Journal Article
Year 1984 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 59 Issue 2 Pages 442-450
Keywords (up) Nb HEB
Abstract The effect of heating of electrons relative to phonons is observed and investigated in a superconducting film that is made resistive by current and by an external magnetic field. The effect is manifested by an increase of the film resistance under the influence of the electromagnetic radiation, and is not selective in the frequency band 10^10-10^15 Hz. The independence of the effect of frequency under conditions of strong scattering by static defects is attributed to the decisive role of electron-electron collisions in the distribution function. The experimentally obtained characteristic time of resistance variation near the superconducting transition corresponds to the relaxation time of the order parameter, while at lower temperatures and fields it corresponds to the time of the inelastic electron-phonon interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ phisix @ Serial 983
Permanent link to this record