|   | 
Details
   web
Records
Author Gerecht, E.; Musante, C. F.; Jian, H.; Zhuang, Y.; Yngvesson, K. S.; Dickinson, J.; Goyette, T.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title Improved characteristics of NbN HEB mixers integrated with log-periodic antennas Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 200-207
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1574
Permanent link to this record
 

 
Author Il'in, K. S.; Gol'tsman, G. N.; Voronov, B. M.; Sobolewski, Roman
Title Characterization of the electron energy relaxation process in NbN hot-electron devices Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 390-397
Keywords HEB mixers, SSPD, SNSPD, NbN films, Nb films
Abstract We report on transient measurements of electron energy relaxation in NbN films with 300-fs time resolution. Using an electro-optic sampling technique, we have studied the photoresponse of 3.5-nm-thick NbN films deposited on sapphire substrates and exposed to 100-fs-wide optical pulses. Our experimental data analysis was based on the two-temperature model and has shown that in our films at the superconducting transition 10.5 K the inelastic electron-phonon scattering time was about (111}+-__.2) ps. This response time indicated that the maximum intermediate-frequency band of a NbN hot-electron phonon-cooled mixer should reach (16+41-3) GHz if one eliminates the bolometric phonon-heating effect. We have suggested several ways to increase the effectiveness of phonon cooling to achieve the above intrinsic value of the NbN mixer bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1576
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 39-48
Keywords NbN HEB mixers
Abstract We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 305
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N.
Title Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 105-111
Keywords NbN SSPD, SNSPD
Abstract We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1528
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W.
Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 405-412
Keywords NbN HEB mixers
Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1502
Permanent link to this record