|   | 
Details
   web
Records
Author Gerecht, E.; Musante, C. F.; Schuch, R.; Lutz, C. R.; Jr.; Yngvesson, K. S.; Mueller, E. R.; Waldivian, J.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title Hot electron detection and mixing experiments in NbN at 119 micrometer wavelength Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 284-293
Keywords NbN HEB mixers, detectors
Abstract (down) We have performed preliminary experiments with the goal of demonstrating a Hot Electron Bolometric (HEB) mixer for a 119 micrometer wavelength (2.5 THz). We have chosen a NbN device of size 700 x 350 micrometers. This device can easily be coupled to a laser LO source, which is advantageous for performing a prototype experiment. The relatively large size of the device means that the LO power required is in the mW range; this power can be easily obtained from a THz laser source. We have measured the amount of laser power actually absorbed in the device, and from this have estimated the best optical coupling loss to be about 10 di . We are developing methods for improving the optical coupling further. Preliminary measurements of the response of the device to a chopped black-body have not yet resulted in a measured receiver noise temperature. We expect to be able to complete this measurement in the near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1629
Permanent link to this record
 

 
Author Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman
Title Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors Type Journal Article
Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 26 Pages 5338-5340
Keywords SSPD, NEP, QE
Abstract (down) We have measured the quantum efficiencysQEd, GHz counting rate, jitter, and noise-equivalentpowersNEPdof nanostructured NbN superconducting single-photon detectorssSSPDsdin thevisible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-typedevices(total area 10310mm2), operating at 4.2 K, exhibit an experimental QE of up to 20% inthe visible range and,10% at 1.3 to 1.55mm wavelength and are potentially sensitive up tomidinfrareds,10mmdradiation. The SSPD counting rate was measured to be above 2 GHz withjitter,18 ps, independent of the wavelength. The devices’ NEP varies from,10−17W/Hz1/2for1.55mm photons to,10−20W/Hz1/2for visible radiation. Lowering the SSPD operatingtemperature to 2.3 K significantly enhanced its performance, by increasing the QE to,20% andlowering the NEP level to,3310−22W/Hz1/2, both measured at 1.26mm wavelength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 532
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Gusinskii, E. N.; Malyavkin, A. V.; Ptitsina, N. G.; Selevko, A. G.; Edel'shtein, V. M.
Title The excitonic Zeeman effect in uniaxially-strained germanium Type Journal Article
Year 1987 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 65 Issue 6 Pages 1233-1241
Keywords Ge, Zeeman effect
Abstract (down) We have carried out a high-resolution spectroscopic study of the absorption of submillimeter radiation by free excitons in germanium compressed along the [ 1 11 ] axis in a magnetic field parallel to the compression axis. In particular, we studied the splitting of the 1s- 2p transition in fields up to 6 kOe at T = 1.6 K, and observed a complex pattern in the Zeeman splitting which we believe is related to the effect of thermal motion of the excitons in a magnetic field on their internal structure (the magneto-Stark effect). The calculated submillimeter spectrum of excitons agrees with the experimental data. We predict that in a magnetic field the energy of the 2p, term is a minimum at a finite value of the exciton momentum perpendicular to the field-that is, the energy minimum forms a ring in momentum space. It follows that the density of states for this term must be a nonmonotonic function of the energy. A theory is developed of analogous phenomena in positronium.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1705
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 52 Issue 8 Pages 576-582
Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel
Abstract (down) We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 599
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Svechnikov, S. I.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.
Title NbN hot electron bolometric mixer for 2.5 THz: the phonon cooled version Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 258-271
Keywords NbN HEB mixers
Abstract (down) We describe an investigation of a NbN HEB mixer for 2.5 THz. NbN HEBs are phonon-cooled de-. vices which are expected, according to theory, to achieve up to 10 GHz IF conversion gain bandwidth. We have developed an antenna coupled device using a log-periodic antenna and a silicon lens. We have demon- strated that sufficient LO power can be coupled to the device in order to bring it to the optimum mixer oper- ating point. The LO power required is less than 1 microwatts as measured directly at the device. We also describe the impedance characteristics of NbN devices and compare them with theory. The experimental results agree with theory except for the imaginary part of the impedance at very low frequencies as was demonstrated by other groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1605
Permanent link to this record