|   | 
Details
   web
Records
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N.
Title Superconductivity in highly disordered NbN nanowires Type Journal Article
Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 27 Issue 47 Pages 47lt02 (1 to 8)
Keywords NbN nanowires
Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:27782000 Approved no
Call Number Serial 1332
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Semenov, A. D.; Gousev, Y. P.; Zorin, M. A.; Gogidze, I. G.; Gershenzon, E. M.; Lang, P. T.; Knott, W. J.; Renk, K. F.
Title Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light Type Journal Article
Year 1991 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 4 Issue 9 Pages 453-456
Keywords NbN HEB detectors
Abstract The authors report on the application of a broad-band NbN film detector which has high sensitivity and picosecond response time for detection of radiation from millimetre wavelengths to visible light. From a study of amplitude modulated radiation of backward-wave tubes and picosecond pulses from gas and solid state lasers at wavelengths between 2 mm and 0.53 mu m, they found a detectivity of 1010 W-1 cm Hz-1/2 and a response time of less than 50 ps at T=10 K. The characteristics were provided by using a 150 AA thick NbN film patterned into a structure of micron strips. According to the proposed detection mechanism, namely electron heating, they expect an intrinsic response time of approximately 20 ps at the same temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 242
Permanent link to this record
 

 
Author Il'in, K. S.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R.
Title Infrared hot-electron NbN superconducting photodetectors for imaging applications Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 755-758
Keywords NbN SSPD, SNSPD
Abstract We report an effective quantum efficiency of 340, responsivity >200 A W-1 (>104 V W-1) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into µm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1562
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N.
Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 853-855
Keywords YBCO HTS HEB mixers
Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1563
Permanent link to this record
 

 
Author Danerud, M.; Winkler, D.; Lindgren, M.; Zorin, M.; Trifonov, V.; Karasik, B.; Gershenzon, E. M.; Gol'tsman, G. N.
Title A fast infrared detector based on patterned YBCO thin film Type Journal Article
Year 1994 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 7 Issue 5 Pages 321-323
Keywords YBCO HTS detector
Abstract Detectors for infrared radiation ( lambda =0.85 mu m) were made of 50 nm thick YBa2Cu3O7- delta films on LaAlO3 and MgO or 60 nm thick films on NdGaO3. Parallel strips (1 mu m wide by 20 mu m long) were patterned in the films and formed the active device. These devices were designed to detect short infrared laser pulses by electron heating. The detectors were current biased into the resistive and the normal states. The response was studied in direct pulse measurements as well as by amplitude modulation of a laser. The pulse measurements showed a fast picosecond response followed by a slower decay related to phonon escape through the film-substrate interface and heat diffusion in the substrate. The frequency spectra up to 10 GHz showed two slopes with a knee corresponding to the phonon escape time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1646
Permanent link to this record