|   | 
Details
   web
Records
Author Morozov, P.; Lukina, M.; Shirmanova, M.; Divochiy, A.; Dudenkova, V.; Gol'tsman, G. N.; Becker, W.; Shcheslavskiy, V. I.
Title Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting Type Journal Article
Year 2021 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 46 Issue 6 Pages 1217-1220
Keywords SSPD, SNSPD, applications
Abstract This Letter presents, to the best of our knowledge, a novel optical configuration for direct time-resolved measurements of luminescence from singlet oxygen, both in solutions and from cultured cells on photodynamic therapy. The system is based on the superconducting single-photon detector, coupled to the confocal scanner that is modified for the near-infrared measurements. The recording of a phosphorescence signal from singlet oxygen at 1270 nm has been done using time-correlated single-photon counting. The performance of the system is verified by measuring phosphorescence from singlet oxygen generated by the photosensitizers commonly used in photodynamic therapy: methylene blue and chlorin e6. The described system can be easily upgraded to the configuration when both phosphorescence from singlet oxygen and fluorescence from the cells can be detected in the imaging mode. Thus, co-localization of the signal from singlet oxygen with the areas inside the cells can be done.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes (down) PMID:33720151 Approved no
Call Number Serial 1221
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N.
Title Superconductivity in highly disordered NbN nanowires Type Journal Article
Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 27 Issue 47 Pages 47lt02 (1 to 8)
Keywords NbN nanowires
Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes (down) PMID:27782000 Approved no
Call Number Serial 1332
Permanent link to this record
 

 
Author Nebosis, R. S.; Heusinger, M. A.; Semenov, A. D.; Lang, P. T.; Schatz, W.; Steinke, R.; Renk, K. F.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.
Title Ultrafast photoresponse of an YBa2Cu3O7-δ film to far-infrared radiation pulses Type Journal Article
Year 1993 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 18 Issue 2 Pages 96-97
Keywords YBCO HTS detectors
Abstract We report the observation of an ultrafast photoresponse of a high-T(c), film to far-infrared radiation pulses. The response of a sample, consisting of a current-carrying structured YBa(2)Cu(3)O(7-delta) film cooled to liquid-nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far-infrared laser in the frequency range from 0.7 to 7 THz. We found that the response time was limited by the time resolution, 120 ps, of our electronic registration equipment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes (down) PMID:19802049 Approved no
Call Number Serial 1660
Permanent link to this record
 

 
Author Mohan, N.; Minaeva, O.; Gol'tsman, G. N.; Nasr, M. B.; Saleh, B. E.; Sergienko, A. V.; Teich, M. C.
Title Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors Type Journal Article
Year 2008 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 16 Issue 22 Pages 18118-18130
Keywords SSPD, SNSPD
Abstract We consider the use of single-photon counting detectors in coherence-domain imaging. Detectors operated in this mode exhibit reduced noise, which leads to increased sensitivity for weak light sources and weakly reflecting samples. In particular, we experimentally demonstrate the possibility of using superconducting single-photon detectors (SSPDs) for optical coherence-domain reflectometry (OCDR). These detectors are sensitive over the full spectral range that is useful for carrying out such imaging in biological samples. With counting rates as high as 100 MHz, SSPDs also offer a high rate of data acquisition if the light flux is sufficient.
Address Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. nm82@bu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes (down) PMID:18958090 Approved no
Call Number Serial 1407
Permanent link to this record
 

 
Author Danerud, M.; Winkler, D.; Zorin, M.; Trifonov, V.; Karasik, B.; Gershenzon, E. M.; Gol'tsman, G. N.; Lindgren, M.
Title Picosecond detection of infrared radiation with YBa2Cu3O7-δ thin films Type Conference Article
Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2104 Issue Pages 183-184
Keywords YBCO HTS HEB detectors
Abstract Picosecond nonequilibrium and slow bolometric responses from a patterned high-Tc superconducting (HTS) film due toinfrared radiation were investigated using both modulation and pulse techniques. Measurements at A, = 0.85 [tm andA, = 10.6 lim have shown a similar behaviour of the response vs modulation frequency f. The responsivity of the HTS filmbased detector at f ..- 0.6-1 GHz is estimated to be 10-2 – 10-1 V/W.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Birch, J.R.; Parker, T.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves
Notes (down) https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=25034664 Approved no
Call Number 10.1117/12.2298489 Serial 1653
Permanent link to this record