toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E. M.; Gol'tsman, G. N. url  doi
openurl 
  Title Hot-electron superconducting mixers Type Conference Article
  Year 1993 Publication (down) Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 2104 Issue Pages 329-330  
  Keywords  
  Abstract The creation of low noise heterodyne receivers for frequencies above 1 THz is in the urgentneed for radio astronomy, laser spectroscopy, plasma diagnostic, etc. In this paper we discussthe nonlinear effect related to hot electrons in superconductors, and their potential use in lownoise submilimeter wave mixer. We also discuss results achieved so far as well as possible futuredevelopments.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Birch, J.R.; Parker, T.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves  
  Notes Approved no  
  Call Number Serial 1654  
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
  Year 2005 Publication (down) Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume 1 Issue 5 Pages 587-590  
  Keywords NbN HEB mixers  
  Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.  
  Address Hangzhou, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-7360 ISBN Medium  
  Area Expedition Conference Progress In Electromagnetics Research Symposium  
  Notes Approved no  
  Call Number Serial 1482  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
  Year 1998 Publication (down) Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-114  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1587  
Permanent link to this record
 

 
Author Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
  Year 1998 Publication (down) Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 121-129  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1588  
Permanent link to this record
 

 
Author Il'in, K. S.; Cherednichenko, S. I.; Gol'tsman, G. N.; Currie, M.; Sobolewski, R. url  openurl
  Title Comparative study of the bandwidth of phonon-cooled NbN hot-electron bolometers in submillimeter and optical wavelength ranges Type Conference Article
  Year 1998 Publication (down) Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 323-330  
  Keywords NbN HEB mixers  
  Abstract We report the results of the bandwidth measurements of NbN hot-electron bolometers, perfomied in the terahertz frequency domain at 140 GHz and 660 GHz and in time domain in the optical range at the wavelength of 395 nm.. Our studies were done on 3.5-nm-thick NbN films evaporated on sapphire substrates and patterned into ilin-size microbridges. In order to measure the gain bandwidth, we used two identical BWOs (140 or 660 GHz), one functioning as a local oscillator and the other as a signal source. The bandwidth we achieved was 3.5-4 GHz at 4.2 K with the optimal LO and DC biases. Time-domain measurements with a resolution below 300 fs were performed using an electro-optic sampling system, in the temperature range between 4.2 K to 9 K at various values of the bias current and optical power. The obtained response time of the NbN hot-electron bolometer to —100- fs-wide Ti:sapphire laser pulses was about 27 ps, what corresponds to the 5.9 GHz gain bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1590  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: