toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S. url  doi
openurl 
  Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 7 Issue 2 Pages 3548-3551  
  Keywords NbN HEB mixers  
  Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1595  
Permanent link to this record
 

 
Author Zorin, M.; Milostnaya, I.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Fast NbN superconducting switch controlled by optical radiation Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 7 Issue 2 Pages 3734-3737  
  Keywords NbN superconducting switch  
  Abstract The switching time and the optical control power of the NbN superconducting switch have been measured. The device is based on the ultrathin film 5-8 nm thick patterned as a structure of several narrow parallel strips (/spl sim/1 /spl mu/m wide) connected to wide current leads. The current-voltage characteristic of the switch at temperature 4.2 K demonstrated a hysteresis due to DC current self-heating. We studied the superconducting-to-resistive state transition induced by both optical and bias-current excitations. The optical pulse duration was /spl sim/20 ps and the rise time of the current step was determined to be less than 50 ps. The optical pulse was delivered to the switch by the semiconductor laser through an optical fiber. We found that the measured switching time is less than the duration of the optical excitation. The threshold optical power density does not exceed 3/spl middot/10/sup 3/ W/cm/sup 2/. The proposed device can be used in the fiber input of LTS rapid single flux quantum circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1596  
Permanent link to this record
 

 
Author Semenov, A. D.; Heusinger, M. A.; Renk, K. F.; Menschikov, E.; Sergeev, A. V.; Elant'ev, A. I.; Goghidze, I. G.; Gol'tsman, G. N. url  doi
openurl 
  Title Influence of phonon trapping on the performance of NbN kinetic inductance detectors Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 7 Issue 2 Pages 3083-3086  
  Keywords NbN KID  
  Abstract Voltage and microwave photoresponse of NbN thin films to modulated and pulsed optical radiation reveals, far below the superconducting transition, a response time consistent with the lifetime of nonequilibrium quasiparticles. We show that even in 5 nm thick films at 4.2 K the phonon trapping is significant resulting in a quasiparticle lifetime of a few nanoseconds that is an order of magnitude larger than the recombination time. Values and temperature dependence of the quasiparticle lifetime obey the Bardeen-Cooper-Schrieffer theory and are in quantitative agreement with the electron-phonon relaxation rate determined from the resistive response near the superconducting transition. We discuss a positive effect of the phonon trapping on the performance of kinetic inductance detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1598  
Permanent link to this record
 

 
Author Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gubkina, T. O.; Semash, V. D. url  openurl
  Title Superconductive properties of ultrathin NbN films on different substrates Type Journal Article
  Year 1994 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume (down) 7 Issue 6 Pages 1097-1102  
  Keywords NbN films  
  Abstract A study was made on dependence of surface resistance, critical temperature and width of superconducting transition on application temperature and thickness of NbN films, which varied within the range of 3-10 nm. Plates of sapphire, fused and monocrystalline quartz, MgO, as well as Si and silicon oxide were used as substrates. NbN films with 160 μθ·cm specific resistance and 16.5 K (Tc) critical temperature were obtained on sapphire substrates. Intensive growth of ΔTc was noted for films, applied on fused quartz, with increase of precipitation temperature. This is explained by occurrence of high tensile stresses in NbN films, caused by sufficient difference of thermal coefficients of expansion of NbN and quartz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0131-5366 ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводниковые свойства ультратонких пленок NbN на различных подложках Approved no  
  Call Number Serial 1631  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Goghidze, I. G.; Kouminov, P. B.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Influence of grain boundary weak links on the nonequilibrium response of YBaCuO thin films to short laser pulses Type Journal Article
  Year 1994 Publication J. Supercond. Abbreviated Journal J. Supercond.  
  Volume (down) 7 Issue 4 Pages 751-755  
  Keywords YBCO HTS detector, nonequilibrium response  
  Abstract The transient voltage response in both epitaxial and granular YBaCuO thin films to 80 ps pulses of YAG∶Nd laser radiation of wavelength 0.63 and 1.54 μm was studied. In the normal and resistive states both types of films demonstrate two components: a nonequilibrium picosecond component and a bolometric nanosecond one. The normalized amplitudes are almost the same for all films. In the superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to five orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of the order parameter by the excess of quasiparticles followed by the change of resistance in the normal and resistive states or kinetic inductance in the superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the cross section for current percolation through the disordered network of Josephson weak links and by a decrease of condensate density in neighboring regions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0896-1107 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1636  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: