toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
  Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 98 Issue Pages (down) 033507 (1 to 3)  
  Keywords NbN HEB mixer  
  Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 638  
Permanent link to this record
 

 
Author Lobanov, Yury; Shcherbatenko, Michael; Shurakov, Alexander; Rodin, Alexander V.; Klimchuk, Artem; Nadezhdinsky, Alexander I.; Maslennikov, Sergey; Larionov, Pavel; Finkel, Matvey; Semenov, Alexander; Verevkin, Aleksandr A.; Voronov, Boris M.; Ponurovsky, Yakov; Klapwijk, Teunis M.; Gol'tsman, Gregory N. url  doi
openurl 
  Title Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer Type Journal Article
  Year 2014 Publication Opt. Lett. Abbreviated Journal  
  Volume 39 Issue 6 Pages (down) 1429-1432  
  Keywords HEB, zebra, IR, infrared  
  Abstract We report on the development of a highly sensitive optical receiver for heterodyne IR spectroscopy at the communication wavelength of 1.5 μm (200 THz) by use of a superconducting hot-electron bolometer. The results are important for the resolution of narrow spectral molecular lines in the near-IR range for the study of astronomical objects, as well as for quantum optical tomography and fiber-optic sensing. Receiver configuration as well as fiber-to-detector light coupling designs are discussed. Light absorption of the superconducting detectors was enhanced by nano-optical antennas, which were coupled to optical fibers. An intermediate frequency (IF) bandwidth of about 3 GHz was found in agreement with measurements at 300 GHz, and a noise figure of about 25 dB was obtained that was only 10 dB above the quantum limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 906  
Permanent link to this record
 

 
Author Korneev, Alexander; Vachtomin, Yury; Minaeva, Olga; Divochiy, Alexander; Smirnov, Konstantin; Okunev, Oleg; Gol'tsman, Gregory; Zinoni, C.; Chauvin, Nicolas; Balet, Laurent; Marsili, Francesco; Bitauld, David; Alloing, Blandine; Li, Lianhe; Fiore, Andrea; Lunghi, L.; Gerardino, Annamaria; Halder, Matthäus; Jorel, Corentin; Zbinden, Hugo url  doi
openurl 
  Title Single-photon detection system for quantum optics applications Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue 4 Pages (down) 944-951  
  Keywords SSPD, SNSPD  
  Abstract We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-¿m wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 430  
Permanent link to this record
 

 
Author Sobolewski, Roman; Xu, Ying; Zheng, Xuemei; Williams, Carlo; Zhang, Jin; Verevkin, Aleksandr; Chulkova, Galina; Korneev, Alexander; Lipatov, Andrey; Okunev, Oleg; Smirnov, Konstantin; Gol'tsman, Gregory N. url  openurl
  Title Spectral sensitivity of the NbN single-photon superconducting detector Type Journal Article
  Year 2002 Publication IEICE Trans. Electron. Abbreviated Journal IEICE Trans. Electron.  
  Volume E85-C Issue 3 Pages (down) 797-802  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to 1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (<100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm to 3.5-µm radiation, and 0.63-µm, 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1531  
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Paine, Scot.t. N.; Patt, Ferdinand; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene doi  openurl
  Title Superconductive hot-electron bolometer mixer receiver for 800 GHz operation Type Miscellaneous
  Year 2000 Publication IEEE Trans. Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microwave Theory and Techniques  
  Volume 48 Issue 4 Pages (down) 683-689  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ Kawamura_superconductivehot-electron Serial 424  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: