|   | 
Details
   web
Records
Author Karasik, B. S.; Zorin, M. A.; Milostnaya, I. I.; Elantev, A. I.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Subnanosecond switching of YBaCuO films between superconducting and normal states induced by current pulse Type Journal Article
Year 1995 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 77 Issue 8 Pages (down) 4064-4070
Keywords YBCO HTS switches
Abstract A study is reported of the current switching in high‐quality YBaCuO films deposited onto NdGaO3 and ZrO2 substrates between superconducting (S) and normal (N) states. The films 60–120 nm thick prepared by laser ablation were structured into single strips between gold contacts. The time dependence of the resistance after application of the voltage step to the film was monitored. Experiment performed within certain ranges of voltage amplitudes and temperatures has shown the occurrence of the fast stage (shorter than 400 ps) both in S‐N and N‐S transitions. A fraction of the film resistance changing within this stage in the S‐N transition increases with the current amplitude. A subnanosecond N‐S stage becomes more pronounced for shorter pulses. The fast switching is followed by the much slower change of resistance. The mechanism of switching is discussed in terms of the hot‐electron phenomena in YBaCuO. The contributions of other thermal processes (e.g., a phonon escape from the film, a heat diffusion in the film and substrate, a resistive domain formation) in the subsequent stage of the resistance dynamic have been also discussed. The basic limiting characteristics (average dissipated power, energy needed for switching, maximum repetition rate) of a picosecond switch which is proposed to be developed are estimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1623
Permanent link to this record
 

 
Author Il’in, K. S.; Milostnaya, I. I.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Sobolewski, R.
Title Ultimate quantum efficiency of a superconducting hot-electron photodetector Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 26 Pages (down) 3938-3940
Keywords NbN SSPD, SNSPD
Abstract The quantum efficiency and current and voltage responsivities of fast hot-electron photodetectors, fabricated from superconducting NbN thin films and biased in the resistive state, have been shown to reach values of 340, 220 A/W, and 4×104 V/W,

respectively, for infrared radiation with a wavelength of 0.79 μm. The characteristics of the photodetectors are presented within the general model, based on relaxation processes in the nonequilibrium electron heating of a superconducting thin film. The observed, very high efficiency and sensitivity of the superconductor absorbing the photon are explained by the high multiplication rate of quasiparticles during the avalanche breaking of Cooper pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1579
Permanent link to this record
 

 
Author Lindgren, M.; Trifonov, V.; Zorin, M.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E.M.
Title Transient resistive photoresponse of YBa2Cu3O7−δ films using low power 0.8 and 10.6 μm laser radiation Type Journal Article
Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 64 Issue 22 Pages (down) 3036-3038
Keywords YBCO HTS HEB, nonequilibrium
Abstract Thin YBa2Cu3O7−δ laser deposited films were patterned into devices consisting of ten parallel 1 μm wide strips. Nonequilibrium picosecond and bolometric photoresponses were studied by the use of 17 ps full width at half‐maximum laser pulses and amplitude modulated radiation from an AlGaAs laser up to 10 GHz and from a CO2 laser up to 1 GHz. The time and frequency domain measurements were in agreement. The fast response can be explained by electron heating. The use of low optical power and a sensitive measurement system excluded any nonlinear transient processes and kinetic inductance changes in the superconducting state. At 1 GHz modulation frequency, the responsivity was ∼1.2 V/W both for 0.8 and 10.6 μm wavelengths. The sensitivity of a fast and spectrally broadband infrared detector is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1639
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Dzardanov, A. L.; Zorin, M. A.
Title Ultrafast superconductive switch Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages (down) 2844-2846
Keywords Nb superconducting switch
Abstract The transition from superconductive to resistive state caused by infrared radiation and bias current pulses was investigated in order to minimize switching time tau and driving power W. Experimental results for Nb microstrips confirm the correctness of calculations based on the model of electron heating. For Nb switches, tau measured directly is 0.3-0.8 ns for radiation pulses and 1-3 ns for bias current pulses at T=4.2 K, while for YBaCuO switches at T=77 K it is expected to be several picoseconds. For an YBaCuO sample with the dimensions of 5*2*0.15 mu m/sup 2/, W was 10 mW, and it can be further reduced to the order of several microwatts by decreasing the volume of the sample.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-0069 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1680
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 47 Issue 12 Pages (down) 2519-2527
Keywords NbN HEB mixers
Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-9670 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1560
Permanent link to this record