toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol’tsman, G. url  doi
openurl 
  Title Time domain analysis of coherent terahertz synchrotron radiation Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 87 Issue (down) 18 Pages 184103 (1 to 3)  
  Keywords NbN HEB mixers, applications  
  Abstract The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ∼1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (∼5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1457  
Permanent link to this record
 

 
Author Elvira, D.; Michon, A.; Fain, B.; Patriarche, G.; Beaudoin, G.; Robert-Philip, I.; Vachtomin, Y.; Divochiy, A. V.; Smirnov, K. V.; Gol’tsman, G. N.; Sagnes, I.; Beveratos, A. url  doi
openurl 
  Title Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm Type Journal Article
  Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 97 Issue (down) 13 Pages 131907 (1 to 3)  
  Keywords SSPD, SNSPD, InAsP/InP quantum dots  
  Abstract By using superconducting single photon detectors, we perform time-resolved characterization of a small ensemble of InAsP/InP quantum dots grown by metal organic vapor phase epitaxy, emitting at wavelengths between 1.6 and 2.2 μm. We demonstrate that alloying phosphorus with InAs allows to shift the emission wavelength toward higher wavelengths, while keeping the high optical quality of these quantum dots at room temperature, with no decrease in their radiative lifetime. This work was partially supported by Russian Ministry of Science and Education: Federal State Program “Scientific and Educational Cadres of Innovative” state Contract Nos. 02.740.0228, 14.740.11.0343, 14.740.11.0269, and P931, and RFBR Project No. 09-02-12364.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1238  
Permanent link to this record
 

 
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N. url  doi
openurl 
  Title A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
  Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 100 Issue (down) 13 Pages 131104 (1 to 4)  
  Keywords semiconductor superlattice  
  Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1379  
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 67 Issue (down) 13 Pages 132508 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1519  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.  
  Volume 49 Issue (down) 13 Pages 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: