toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol’tsman, G. N. url  openurl
  Title (down) The “Millimetron” project, a future space telescope mission Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 255  
  Keywords Millimetron space observatory, VLBI  
  Abstract The goal of the Millimetron project is to develop a space observatory operating in the millimeter, sub-millimeter and infrared wavelength ranges using a 12-m actively cooled telescope in a single-dish mode and as an interferometer with the space-ground and space-space baselines (the later after the launch of the second identical space telescope). The Millimetron’s main reflector and other optics will be cooled down to 4K thus enabling astronomical observations with super high sensitivity in MM and subMM (down to nanoJansky level). Heterodyne observations in an interferometer mode at frequencies 0.1-1 THz will provide super high angular resolution. The main instruments, planned to be installed are wide-range imaging arrays, radiometers with spectrometers and polarimeters, VLBI heterodyne receivers, and Mikelson type interferometer devices. Wide-range MM and subMM imaging arrays and spectrometers will be based on a superconducting hot electron direct detectors with Andreev mirrors operating at 0.1 K. Such detectors are the best candidates to reach the noise equivalent power level of 10 -19 -10 -20 W/√Hz. Heterodyne receivers will be both SIS based superconducting integrated receiver with flux-flow oscillator as LO (0.1-0.9 THz range) and HEB based receivers using multiplied Gunn oscillator as LO for 1-2 THz range and quantum cascade lasers as LO for 2-5 THz range. For observations in middle IR region there will be installed large arrays of superconducting single photon detectors, providing imaging with very high dynamic range and ultimate sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1422  
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N. url  openurl
  Title (down) The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
  Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics  
  Volume 48 Issue 6 Pages 671-675  
  Keywords NbN HEB mixers  
  Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.  
  Address  
  Corporate Author Thesis  
  Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no  
  Call Number Vakhtomin2003 Serial 1522  
Permanent link to this record
 

 
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E. url  doi
openurl 
  Title (down) Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages 952-954  
  Keywords NbN HEB mixers  
  Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1546  
Permanent link to this record
 

 
Author Gol’tsman, G. N. url  doi
openurl 
  Title (down) Terahertz technology in Russia Type Conference Article
  Year 1994 Publication 24th European Microwave Conf. Abbreviated Journal 24th European Microwave Conf.  
  Volume 1 Issue Pages 113-121  
  Keywords BWO, HEB mixers  
  Abstract The presentation consider the parameters and operating peculiarities of unique microwave generators of the terahertz range which have been created in Russia – the backward wave oscillators – as well as certain devices based on these generators, such as high resolution. spectrometers and time-resolving spectrometers with picosecond temporal resolution. Most resent BWO-based studies are illustrated by a project devoted to superconductive hot-electron. bolometers which are of great independent value for the terahertz technology as high-sensitive picosecond detectors and low noise broad-band mixers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 24th European Microwave Conference  
  Notes Approved no  
  Call Number Serial 1635  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. url  openurl
  Title (down) Terahertz imaging system based on superconducting integrated receiver Type Conference Article
  Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications  
  Volume Issue Pages 20-22  
  Keywords SIS mixer, SIR  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ozhegov2010terahertz Serial 1397  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: