toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N. url  openurl
  Title (down) Terahertz heterodyne array based on NbN HEB mixers Type Abstract
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 43  
  Keywords NbN HEB mixers array  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1411  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  openurl
  Title (down) Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop  
  Volume Issue Pages 3-24  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address  
  Corporate Author Thesis  
  Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.  
  Language Summary Language Original Title  
  Series Editor Series Title NASA CP Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Volume: 211408 Approved no  
  Call Number Serial 1537  
Permanent link to this record
 

 
Author Heusinger, M. A.; Nebosis,R. S.; Schatz, W.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title (down) Temperature dependence of bolometric and non-bolometric photoresponse of a structured YBa2Cu3O7-δ thin film Type Conference Article
  Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences  
  Volume 112 Issue Pages 193-195  
  Keywords YBCO HTS detectors  
  Abstract We investigated the temperature dependence of the transient voltage photoresponse of a current biased structured YBa2Cu3O7−δ thin film in its transition temperature region, around 79 K. Both, picosecond nonbolometric and nanosecond bolometric response to ultrashort far-infrared laser pulses were found for frequencies between 25 cm−1 and 215 cm−1. We will discuss optimum conditions for radiation detection and present an analysis of the dynamical behaviour of excited high T c thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992  
  Notes Approved no  
  Call Number Serial 1663  
Permanent link to this record
 

 
Author Verevkin, A. A.; Zhang, J.; Slysz, W.; Sobolewski, R.; Lipatov, A. P.; Okunev, O.; Chulkova, G.; Korneev, A.; Gol’tsman, G. N. url  doi
openurl 
  Title (down) Superconducting single-photon detectors for GHz-rate free-space quantum communications Type Conference Article
  Year 2002 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4821 Issue Pages 447-454  
  Keywords NbN SSPD, SNSPD, single-photon detector, thin-film superconductivity, quantum cryptography, ultrafast communications  
  Abstract We report our studies on the performance of new NbN ultrathin-film superconducting single-photon detectors (SSPDs). Our SSPDs exhibit experimentally measured quantum efficiencies from   5% at wavelength λ = 1550 nm up to  10% at λ = 405 nm, with exponential, activation-energy-type spectral sensitivity dependence in the 0.4-μm – 3-μm wavelength range. Using a variable optical delay setup, we have shown that our NbN SSPDs can resolve optical photons with a counting rate up to 10 GHz, presently limited by the read-out electronics. The measured device jitter was below 35 ps under optimum biasing conditions. The extremely high photon counting rate, together with relatively high (especially for λ > 1 μm) quantum efficiency, low jitter, and very low dark counts, make NbN SSPDs very promising for free-space communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Ricklin, J.C.; Voelz, D.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Free-Space Laser Communication and Laser Imaging II  
  Notes Approved no  
  Call Number Serial 1523  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochij, A.; Rubtsova, I.; Antipov, A.; Ryabchun, S.; Okunev, O.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Kaurova, N.; Seleznev, V.; Korotetskaya, Y.; Gol’tsman, G. url  doi
openurl 
  Title (down) Superconducting single-photon detector for near- and middle IR wavelength range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 684-685  
  Keywords NbN SSPD, SNSPD  
  Abstract Presented in this paper are the results of research of NbN-film superconducting single-photon detector. At 2 K temperature, quantum efficiency in the visible light (0.56 mum) reaches 30-40 %. With the wavelength increase quantum efficiency decreases and comes to  20% at 1.55 mum and  0.02% at 5.6 mum. Minimum dark counts rate is 2times10-4s-1. The jitter of detector is 35 ps. The detector was successfully implemented for integrated circuits non-invasive optical testing. It is also perspective for quantum cryptography systems  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1447  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: