toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type (up) Conference Article
  Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal Proc. 28th European Microwave Conf.  
  Volume 1 Issue Pages 294-299  
  Keywords NbN HEB mixers  
  Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 28th European Microwave Conference  
  Notes Approved no  
  Call Number Serial 1580  
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G. N.; Voronov, B. M. url  doi
openurl 
  Title Superconducting hot electron bolometer as mixer for far-infrared heterodyne receivers Type (up) Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages 395-401  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Tucson, USA Editor Phillips, T. G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Abbreviated Series Title  
  Series Volume 4855 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 335  
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Improved NbN phonon cooled hot electron bolometer mixers Type (up) Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 413-423  
  Keywords NbN HEB mixers  
  Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance to Au pads. By adding either a 5 nm Nb or a 10 nm NbTiN layer between the Au and NbN, to preserve superconductivity in the NbN under the Au contact pad, superior noise temperatures have been obtained. Using DC I,V curves and resistive transitions in combination with process parameters we analyze the nature of these improved devices and determine interface transparencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Tucson, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 337  
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G. url  doi
openurl 
  Title A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type (up) Conference Article
  Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest  
  Volume 2 Issue Pages 751-754  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.  
  Address Philadelphia, PA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1516  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. url  openurl
  Title Terahertz imaging system based on superconducting integrated receiver Type (up) Conference Article
  Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications  
  Volume Issue Pages 20-22  
  Keywords SIS mixer, SIR  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ozhegov2010terahertz Serial 1397  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: