toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol’tsman, G. url  doi
openurl 
  Title One-dimensional resistive states in quasi-two-dimensional superconductors: Experiment and theory Type Journal Article
  Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 76 Issue 9 Pages 094521 (1 to 5)  
  Keywords uasi-two-dimensional superconductors, NbN  
  Abstract We investigate competition between one- and two-dimensional topological excitations—phase slips and vortices—in the formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature TC0. The widths w=100nm of our ultrathin NbN samples are substantially larger than the Ginzburg-Landau coherence length ξ=4nm, and the fluctuation resistivity above TC0 has a two-dimensional character. However, our data show that the resistivity below TC0 is produced by one-dimensional excitations—thermally activated phase slip strips (PSSs) overlapping the sample cross section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current and/or temperature variations. Measuring the resistivity within 7 orders of magnitude, we find that the quantum phase slips can only be essential below this level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1423  
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 67 Issue 13 Pages 132508 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1519  
Permanent link to this record
 

 
Author Il’in, K.S.; Ptitsina, N.G.; Sergeev, A.V.; Gol’tsman, G.N.; Gershenzon, E.M.; Karasik, B.S.; Pechen, E.V.; Krasnosvobodtsev, S.I. url  doi
openurl 
  Title Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films Type Journal Article
  Year 1998 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 57 Issue 24 Pages 15623-15628  
  Keywords NbC films  
  Abstract A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2–13nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference T2 term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5–10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence ∼Tn, with the exponent n=2.5–3. This behavior is explained well by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1585  
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N. url  doi
openurl 
  Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
  Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 19 Issue 4 Pages L (9 to 12)  
  Keywords NbN HEB mixers  
  Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1456  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  openurl
  Title Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop  
  Volume Issue Pages 3-24  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address  
  Corporate Author Thesis  
  Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.  
  Language Summary Language Original Title  
  Series Editor Series Title NASA CP Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Volume: 211408 Approved no  
  Call Number Serial 1537  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: