toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages 952-954  
  Keywords NbN HEB mixers  
  Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1546  
Permanent link to this record
 

 
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R. url  doi
openurl 
  Title Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages 574-577  
  Keywords NbN SSPD, SNSPD  
  Abstract A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1547  
Permanent link to this record
 

 
Author Nebosis, R. S.; Heusinger, M. A.; Schatz, W.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Ultrafast photoresponse of a structured YBa2Cu3O7-δ thin film to ultrashort FIR laser pulses Type Journal Article
  Year 1993 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 3 Issue 1 Pages 2160-2162  
  Keywords YBCO HTS detectors  
  Abstract The authors have investigated the photoinduced voltage response of a current-carrying structured YBa2Cu3O7-δ thin film to ultrashort far-infrared (FIR) laser pulses in the frequency range from 0.7 THz to 7 THz. The detector has shown an almost constant sensitivity of 1 mV/W and a noise equivalent power of less than 5*10/sup -7/ W/ square root Hz. The temperature dependence of the decay time of the detector signal was studied for temperatures around the transition temperature of the film ( approximately 80 K). For a detector temperature where dR/dT had its maximum, the authors observed bolometric signals with decay times of about 2 ns, and for lower temperatures they observed nonbolometric signals with decay times of approximately 120 ps; the duration of the nonbolometric signals was limited by the time resolution of the electronic registration equipment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1658  
Permanent link to this record
 

 
Author Semenov, A. D.; Goghidze, I. G.; Gol’tsman, G. N.; Sergeev, A. V.; Aksaev, E. E.; Gershenzon, E. M. url  doi
openurl 
  Title Non-equilibrium quasiparticle response to radiation and bolometric effect in YBaCuO films Type Journal Article
  Year 1993 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 3 Issue 1 Pages 2132-2135  
  Keywords YBCO HTS HEB detectors  
  Abstract The voltage photoresponse of structured current biased YBCO films on different substrates to 20-ps laser pulses of 0.63- mu m and 1.54- mu m wavelengths and to continuously modulated radiation of 2-mm wavelength is measured to temperatures around Tc. Fast picosecond decay of the response to pulsed radiation is followed by slow exponential relaxation with a nanosecond characteristic time depending on the substrate material and film dimensions. The slow component does not depend on wavelength and is attributed to the bolometric effect, while the magnitude of the fast component associated with nonequilibrium response rises with wavelength. More than an order-of-magnitude increase of the nonequilibrium response is seen from near-infrared to millimeter-wave range. This dependence plausibly reflects the low efficiency of multiplication of photoexcited electrons in YBaCuO compared to conventional superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1659  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 47 Issue 12 Pages 2519-2527  
  Keywords NbN HEB mixers  
  Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-9670 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1560  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: