toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S. url  doi
openurl 
  Title Thermal relaxation in metal films limited by diffuson lattice excitations of amorphous substrates Type Journal Article
  Year 2021 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 15 Issue 5 Pages 054014  
  Keywords InOx, Au/Ni, NbN films  
  Abstract (up) We examine the role of a silicon-based amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The samples studied consist of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry is used to measure the electron temperature Te of the films as a function of Joule power per unit area P2D. In all samples, we observe a P2D∝Tne dependence, with exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear temperature dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for a phonon mean free path shorter than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1769  
Permanent link to this record
 

 
Author Shcherbatenko, M. L.; Elezov, M. S.; Goltsman, G. N.; Sych, D. V. url  doi
openurl 
  Title Sub-shot-noise-limited fiber-optic quantum receiver Type Journal Article
  Year 2020 Publication Phys. Rev. A Abbreviated Journal Phys. Rev. A  
  Volume 101 Issue 3 Pages 032306 (1 to 5)  
  Keywords SSPD mixer, SNSPD  
  Abstract (up) We experimentally demonstrate a quantum receiver based on the Kennedy scheme for discrimination between two phase-modulated weak coherent states. The receiver is assembled entirely from standard fiber-optic elements and operates at a conventional telecom wavelength of 1.55 μm. The local oscillator and the signal are transmitted through different optical fibers, and the displaced signal is measured with a high-efficiency superconducting nanowire single-photon detector. We show the discrimination error rate is two times below that of a shot-noise-limited receiver with the same system detection efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1268  
Permanent link to this record
 

 
Author Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Enhance of the superconducting properties of the NbN/Au bilayer bridges Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012132 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract (up) We experimentally demonstrate strong temperature dependence of the critical current of the superconducting 600-nm-wide and 5-μm-long bridge made of NbN/Au bilayer. The result is achieved due to the proximity effect realized between the highly disordered superconducting NbN layer and low resistive normal-metal Au layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1263  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N. doi  openurl
  Title Superconducting single-photon detector made of MoSi film Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 9 Pages 095012  
  Keywords SSPD, SNSPD  
  Abstract (up) We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ korneeva2014superconducting Serial 1044  
Permanent link to this record
 

 
Author Nasr, M. B.; Minaeva, O.; Goltsman, G. N.; Sergienko, A. V.; Saleh, B. E.; Teich, M. C. url  doi
openurl 
  Title Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors Type Journal Article
  Year 2008 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 16 Issue 19 Pages 15104-15108  
  Keywords SSPD, SNSPD  
  Abstract (up) We generate ultrabroadband biphotons via the process of spontaneous parametric down-conversion in a quasi-phase-matched nonlinear grating that has a linearly chirped poling period. Using these biphotons in conjunction with superconducting single-photon detectors (SSPDs), we measure the narrowest Hong-Ou-Mandel dip to date in a two-photon interferometer, having a full width at half maximum (FWHM) of approximately 5.7 fsec. This FWHM corresponds to a quantum optical coherence tomography (QOCT) axial resolution of 0.85 µm. Our results indicate that a high flux of nonoverlapping biphotons may be generated, as required in many applications of nonclassical light.  
  Address Departments of Electrical & Computer Engineering and Physics, Quantum Imaging Laboratory, Boston University, Boston, MA 02215, USA. boshra@bu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18795048 Approved no  
  Call Number Serial 1408  
Permanent link to this record
 

 
Author Titova, N.; Kardakova, A. I.; Tovpeko, N.; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S. R.; Williams, O. A.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title Slow electron–phonon cooling in superconducting diamond films Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-4  
  Keywords superconducting diamond films, electron-phonon cooling  
  Abstract (up) We have measured the electron-phonon energy-relaxation time, τ eph , in superconducting boron-doped diamond films grown on silicon substrate by chemical vapor deposition. The observed electron-phonon cooling times vary from 160 ns at 2.70 K to 410 ns at 1.8 K following a T -2-dependence. The data are consistent with the values of τ eph previously reported for single-crystal boron-doped diamond films epitaxially grown on diamond substrate. Such a noticeable slow electron-phonon relaxation in boron-doped diamond, in combination with a high normal-state resistivity, confirms a potential of superconducting diamond for ultrasensitive superconducting bolometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1168  
Permanent link to this record
 

 
Author Kardakova, A. I.; Coumou, P. C. J. J.; Finkel, M. I.; Morozov, D. V.; An, P. P.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title Electron–phonon energy relaxation time in thin strongly disordered titanium nitride films Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 1-4  
  Keywords TiN MKID  
  Abstract (up) We have measured the energy relaxation times from the electron bath to the phonon bath in strongly disordered TiN films grown by atomic layer deposition. The measured values of τ eph vary from 12 to 91 ns. Over a temperature range from 3.4 to 1.7 K, they follow T -3 temperature dependence, which are consistent with values of τ eph reported previously for sputtered TiN films. For the most disordered film, with an effective elastic mean free path of 0.35 nm, we find a faster relaxation and a stronger temperature dependence, which may be an additional indication of the influence of strong disorder on a superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1296  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 103 Issue Pages 10004 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract (up) We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1351  
Permanent link to this record
 

 
Author Ferrari, S.; Kahl, O.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires Type Journal Article
  Year 2015 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 106 Issue 15 Pages 151101 (1 to 5)  
  Keywords SSPD, SNSPD  
  Abstract (up) We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

W. H. P. Pernice acknowledges support by the DFG Grant Nos. PE 1832/1-1 and PE 1832/1-2 and the Helmholtz society through Grant No. HIRG-0005. The Ph.D. education of O. Kahl is embedded in the Karlsruhe School of Optics and Photonics (KSOP). G. N. Goltsman acknowledges support by Russian Federation President Grant HШ-1918.2014.2 and Ministry of Education and Science of the Russian Federation Contract No.: RFMEFI58614X0007. A. Korneev acknowledges support by Statement Task No. 3.1846.2014/k. V. Kovalyuk acknowledges support by Statement Task No. 2327. We also acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. We thank S. Kühn and S. Diewald for the help with device fabrication as well as B. Voronov and A. Shishkin for help with NbN thin film deposition and A. Semenov for helpful discussion about the detection mechanism of nanowire SSPD's.

The authors declare no competing financial interests.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1211  
Permanent link to this record
 

 
Author Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N. doi  openurl
  Title Characterization of MoSi superconducting single-photon detectors in the magnetic field Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2200504 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract (up) We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2015 Serial 991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: