|   | 
Details
   web
Records
Author Gershenzon, E. M.; Goltsman, G. N.; Orlov, L.
Title Investigation of population and ionization of donor excited states in Ge Type (up) Conference Article
Year 1976 Publication Physics of Semiconductors Abbreviated Journal Physics of Semiconductors
Volume Issue Pages 631-634
Keywords Ge, donor excited states
Abstract
Address Amsterdam
Corporate Author Thesis
Publisher North-Holland Publishing Co. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1732
Permanent link to this record
 

 
Author Averkin, A. S.; Shishkin, A. G.; Chichkov, V. I.; Voronov, B. M.; Goltsman, G. N.; Karpov, A.; Ustinov, A. V.
Title Tunable frequency-selective surface based on superconducting split-ring resonators Type (up) Conference Article
Year 2014 Publication 8th Metamaterials Abbreviated Journal 8th Metamaterials
Volume Issue Pages
Keywords superconducting split-ring resonators
Abstract We study a possibility to use the 2D superconducting metamaterial as a tunable frequency-selective surface (FSS). The proposed FSS is made of sub-wavelength size (l/14) metamaterial unit cells, where a split-ring resonator is embedded in a small iris aperture in a metal plane. The split-ring resonator is made of NbN film, and its resonance frequency is tuned by the temperature of the sample, changing the kinetic inductance of NbN film. The Ansoft HFSS simulation predicts the FSS tuning range of about 10-20 %. The developed superconducting FSS may be used as a tunable band-pass filter or modulator.
Address Copenhagen, Denmark
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics – Metamaterials
Notes Approved no
Call Number Serial 1749
Permanent link to this record
 

 
Author Gershenzon, E. M.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Limiting characteristic of fast superconducting bolometers Type (up) Journal Article
Year 1989 Publication Sov. Phys.-Tech. Phys. Abbreviated Journal Sov. Phys.-Tech. Phys.
Volume 34 Issue Pages 195-199
Keywords HEB
Abstract Теоретически и экспериментально исследовано физическое ограничение быстродействия сверхпроводящего болометра. Показано, что минимальная постоянная времени реализуется в условиях электронного разогрева и определяется процессом неупругого электрон-фонон- ного взаимодействия. Сформулированы требования кконструкции «электронного болометра» для достижения предельной чувствительности. Проведено сравнение характеристик электронного болометра и обычных болометров различных типов.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes О предельных характеристиках быстродействующих серхпроводниковых болометров Approved no
Call Number Serial 237
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Wide-band highspeed Nb and YBaCuO detectors Type (up) Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 2836-2839
Keywords YBCO, HTS, Nb detectors
Abstract The physical limitations on the response time and the nature of nonequilibrium detection of radiation were investigated for Nb and YBCO film in a wide spectral range from millimeter to near-infrared wavelengths. In the case of ideal heat removal from the film, the detection mechanism is connected with an electron heating effect which is not selective over a wide spectral interval. For Nb, the dependence of the response time on the electron mean free path l and temperature T is tau varies as T/sup -2/l/sup -1/. The values of detectivity D* and tau are 3*10/sup 11/ W/sup -1/ Hz/sup 1/2/ cm and 5*10/sup -9/ s at T=1.6 K, respectively. For YBCO film the tau value of 1-2 ps at T=77 K was obtained; the NEP value of 3*10/sup -11/ W-Hz/sup -1/2/ can be obtained at T=77 K in the case of the optimal film matching to the radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 239
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Lulkin, A.; Semenov, A. D.; Sergeev, A. V.
Title Electron-phonon interaction in ultrathin Nb films Type (up) Journal Article
Year 1990 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 70 Issue 3 Pages 505-511
Keywords Nb films
Abstract A study was made of the heating of electrons in normal resistive states of superconducting thin Nb films. The directly determined relaxation time of the resistance of a sample and the rise of the electron temperature were used to find the electron-phonon interaction time rep,, The dependence of rep, on the mean free path of electrons re,, a 1-'demonstrated, in agreement with the theoretical predictions, that the contribution of the inelastic scattering of electrons by impurities to the energy relaxation process decreased at low temperatures and the observed temperature dependence rep, a T 2 was due to a modification of the phonon spectrum in thin fllms.

1. Much new information on the electron-phonon interaction time?;,, in thin films of normal metals and superconductors has been published recently. This information has been obtained mainly as a result of two types of measurement. One includes experiments on weak electron localization investigated by the method of quantum interference corrections to the conductivity of disordered conductors, which can be used to find the relaxation time T, of the phase of the electron wave function. In the absence of the scattering of electrons by paramagnetic impurities the relaxation time T, is associated with the most effective process of energy relaxation: T;= TL+ rep;, where T,, is the electronelectron relaxation time. At low temperatures, when the dependence T; a T is exhibited by thin disordered films, the dominant channel is that of the electron-electron relaxation and there is a lower limit to the temperature range in which rep, can be investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 241
Permanent link to this record