|   | 
Details
   web
Records
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A.
Title Electron energy relaxation in disordered superconducting NbN films Type Journal Article
Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 102 Issue 5 Pages (down) 054501 (1 to 15)
Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time
Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1266
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S.
Title Thermal relaxation in metal films limited by diffuson lattice excitations of amorphous substrates Type Journal Article
Year 2021 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 15 Issue 5 Pages (down) 054014
Keywords InOx, Au/Ni, NbN films
Abstract We examine the role of a silicon-based amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The samples studied consist of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry is used to measure the electron temperature Te of the films as a function of Joule power per unit area P2D. In all samples, we observe a P2D∝Tne dependence, with exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear temperature dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for a phonon mean free path shorter than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1769
Permanent link to this record
 

 
Author Saveskul, N. A.; Titova, N. A.; Baeva, E. M.; Semenov, A. V.; Lubenchenko, A. V.; Saha, S.; Reddy, H.; Bogdanov, S. I.; Marinero, E. E.; Shalaev, V. M.; Boltasseva, A.; Khrapai, V. S.; Kardakova, A. I.; Goltsman, G. N.
Title Superconductivity behavior in epitaxial TiN films points to surface magnetic disorder Type Journal Article
Year 2019 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 12 Issue 5 Pages (down) 054001
Keywords epitaxial TiN films
Abstract We analyze the evolution of the normal and superconducting properties of epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase of the residual resistivity, that becomes dominated by diffusive surface scattering for d≤20nm. At the same time, a substantial thickness-dependent reduction of the superconducting critical temperature is observed compared to the bulk TiN value. In such high-quality material films, this effect can be explained by a weak magnetic disorder residing in the surface layer with a characteristic magnetic defect density of approximately 1012cm−2. Our results suggest that surface magnetic disorder is generally present in oxidized TiN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1166
Permanent link to this record
 

 
Author Matyushkin, Y. E.; Gayduchenko, I. A.; Moskotin, M. V.; Goltsman, G. N.; Fedorov, G. E.; Rybin, M. G.; Obraztsova, E. D.
Title Graphene-layer and graphene-nanoribbon FETs as THz detectors Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages (down) 051054
Keywords field-effect transistor, FET, monolayer graphene, graphene nanoribbons
Abstract We report on detection of sub-THz radiation (129-430 GHz) using graphene based asymmetric field-effect transistor (FET) structures with different channel geometry: monolayer graphene, graphene nanoribbons. In all devices types we observed the similar trends of response on sub-THz radiation. The response fell with increasing frequency at room temperature, but increased with increasing frequency at 77 K. Our calculations show that the change in the trend of the frequency dependence at 77 K is associated with the appearance of plasma waves in the graphene channel. Unusual properties of p-n junctions in graphene are highlighted using devices of special geometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1300
Permanent link to this record
 

 
Author Prokhodtsov, A.; An, P.; Kovalyuk, V.; Zubkova, E.; Golikov, A.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G.
Title Optimization of on-chip photonic delay lines for telecom wavelengths Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages (down) 051052
Keywords optical delay lines
Abstract In this work, we experimentally studied optical delay lines on silicon nitride platform for telecomm wavelength (1550 nm). We modeled the group delay time and fabricated spiral optical delay lines with different waveguide widths and radii as well as measured their transmission. For the half etched rib waveguides we achieved the losses in the range of 3 dB/cm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1196
Permanent link to this record