toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
  Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 92 Issue (down) 10 Pages 104503 (1 to 9)  
  Keywords SSPD, SNSPD  
  Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1343  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Goltsman, G. N.; Ptitsyna, N. G. url  openurl
  Title Investigation of excited donor states in GaAs Type Journal Article
  Year 1974 Publication Sov. Phys. Semicond. Abbreviated Journal Sov. Phys. Semicond.  
  Volume 7 Issue (down) 10 Pages 1248-1250  
  Keywords GaAs, excited donor states  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Amer Inst Physics 1305 Walt Whitman Rd, Ste 300, Melville, Ny 11747-4501 Usa Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1733  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Nano-structured superconducting single-photon detectors Type Journal Article
  Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal  
  Volume 520 Issue (down) 1-3 Pages 527-529  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1495  
Permanent link to this record
 

 
Author Kawamura, J.; Hunter, T. R.; Tong, C. Y. E.; Blundell, R.; Papa, D. C.; Patt, F.; Peters, W.; Wilson, T.; Henkel, C.; Goltsman, G.; Gershenzon, E. url  doi
openurl 
  Title Ground-based terahertz CO spectroscopy towards Orion Type Journal Article
  Year 2002 Publication A&A Abbreviated Journal A&A  
  Volume 394 Issue (down) 1 Pages 271-274  
  Keywords HEB mixers, applications  
  Abstract Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO () spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, , high density molecular gas, , is quite extended, found along a ~ region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with and ≈ . The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 322  
Permanent link to this record
 

 
Author Angeluts, A. A.; Bezotosnyi, V. V.; Cheshev, E. A.; Goltsman, G. N.; Finkel, M. I.; Seliverstov, S. V.; Evdokimov, M. N.; Gorbunkov, M. V.; Kitaeva, G. Kh.; Koromyslov, A. L.; Kostryukov, P. V.; Krivonos, M. S.; Lobanov, Yu. V.; Shkurinov, A. P.; Sarkisov, S. Yu.; Tunkin, V. G. doi  openurl
  Title Compact 1.64 THz source based on a dual-wavelength diode end-pumped Nd:YLF laser with a nearly semiconfocal cavity Type Journal Article
  Year 2014 Publication Laser Phys. Lett. Abbreviated Journal  
  Volume 11 Issue (down) 1 Pages 015004 (1 to 4)  
  Keywords HEB applications, HEB detector applications, short THz pulses detection  
  Abstract We describe a compact dual-wavelength (1.047 and 1.053 μm) diode end-pumped Q-switched Nd:YLE laser source which has a number of applications in demand. In order to achieve its dual-wavelength operation it is suggested for the first time to use essentially nonmonotonous dependences of the threshold pump powers at these wavelengths on the cavity length in the region of the cavity semiconfocal configuration under a radius of the pump beam smaller than the radius of the zero Gaussian mode. Here we demonstrate one of the most interesting applications for this laser: difference frequency generation in a GaSe crystal at a frequency of 1.64 THz. A superconducting hot-electron bolometer is used to detect the THz power generated and to measure its pulse characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1076  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: