|   | 
Details
   web
Records
Author Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Goltsman, G.
Title Integrated Bragg waveguides as an efficient optical notch filter on silicon nitride platform Type Conference Article
Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 449-450
Keywords Bragg waveguides
Abstract We modeled and fabricated integrated optical Bragg waveguides on a silicon nitride (Si3N4) platform. Transmission spectra of the integrated notch filter has been measured and attenuation at the desired wavelength of 1550 nm down to -43 dB was observed.
Address St. Petersburg, Russia
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1141 Approved no
Call Number Serial 1257
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S. V.; Teplyakova, K. O.; Jani, E. V.; Pozdniakova, V. V.; Polyakova, O. N.; Goltsman, G. N.
Title Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification Type Journal Article
Year 2021 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 26 Issue 4 Pages
Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation
Abstract SIGNIFICANCE: Water content plays a vital role in the normally functioning visual system; even a minor disruption in the water balance may be harmful. Today, no direct method exists for corneal hydration assessment, while it could be instrumental in early diagnosis and control of a variety of eye diseases. The use of terahertz (THz) radiation, which is highly sensitive to water content, appears to be very promising. AIM: To find out how THz scanning parameters of corneal tissue measured by an experimental setup, specially developed for in vivo contactless estimations of corneal reflectivity coefficient (RC), are related to pathological changes in the cornea caused by B-band ultraviolet (UVB) exposure. APPROACH: The setup was tested on rabbit eyes in vivo. Prior to the course of UVB irradiation and 1, 5, and 30 days after it, a series of examinations of the corneal state was made. At the same time points, corneal hydration was assessed by measuring RC. RESULTS: The obtained data confirmed the negative impact of UVB irradiation course on the intensity of tear production and on the corneal thickness and optical parameters. A significant (1.8 times) increase in RC on the 5th day after the irradiation course, followed by a slight decrease on the 30th day after it was revealed. The RC increase measured 5 days after the UVB irradiation course generally corresponded to the increase (by a factor of 1.3) of tear production. RC increase occurred with the corneal edema, which was manifested by corneal thickening (by 18.2% in the middle area and 17.6% in corneal periphery) and an increased volume of corneal tissue (by 17.6%). CONCLUSIONS: Our results demonstrate that the proposed approach can be used for in vivo contactless estimation of the reflectivity of rabbit cornea in the THz range and, thereby, of cornea hydration.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathema, Russia
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:33834684; PMCID:PMC8027227 Approved no
Call Number Serial 1258
Permanent link to this record
 

 
Author Baksheeva, K.; Ozhegov, R.; Goltsman, G.; Kinev, N.; Koshelets, V.; Kochnev, A.; Betzalel, N.; Puzenko, A.; Ben Ishai, P.; Feldman, Y.
Title The sub THz emission of the human body under physiological stress Type Journal Article
Year 2021 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal IEEE Trans. Terahertz Sci. Technol.
Volume Issue Pages
Keywords skin sub-THz emission, medicine
Abstract We present evidence that in the sub-THz frequency band, human skin can be considered as an electromagnetic bio-metamaterial, in that its natural emission is a product of skin tissue geometry and embedded structures. Radiometry was performed on 32 human subjects from 480 to 700 GHz. Concurrently, the subjects were exposed to stress, while heart pulse rate (PS) and galvanic skin response (GSR) were also measured. The results are substantially different from the expected black body radiation signal of the skin surface. PS and GSR correlate to the emissivity. Using a simulation model for the skin, we find that the sweat duct is a critical element. The simulated frequency spectra qualitatively match the measured emission spectra and show that our sub-THz emission is modulated by our level of mental stress. This opens avenues for the remote monitoring of the human state.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 9380570 Serial 1259
Permanent link to this record
 

 
Author Gayduchenko, I.; Xu, S. G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A. K.; Fedorov, G.; Svintsov, D.; Bandurin, D. A.
Title Tunnel field-effect transistors for sensitive terahertz detection Type Journal Article
Year 2021 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 12 Issue 1 Pages 543
Keywords field-effect transistors, bilayer graphene, BLG
Abstract The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here, we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG). Taking advantage of BLG's electrically tunable band structure, we create a lateral tunnel junction and couple it to an antenna exposed to THz radiation. The incoming radiation is then down-converted by the tunnel junction nonlinearity, resulting in high responsivity (>4 kV/W) and low-noise (0.2 pW/[Formula: see text]) detection. We demonstrate how switching from intraband Ohmic to interband tunneling regime can raise detectors' responsivity by few orders of magnitude, in agreement with the developed theory. Our work demonstrates a potential application of tunnel transistors for THz detection and reveals BLG as a promising platform therefor.
Address Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. bandurin@mit.edu
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes PMID:33483488; PMCID:PMC7822863 Approved no
Call Number Serial 1261
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N.
Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 128 Issue 22 Pages 224303 (1 to 11)
Keywords HEB, resonant tunneling diode, RTD
Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1262
Permanent link to this record