toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title (down) Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
  Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.  
  Volume 44 Issue 3 Pages 221-225  
  Keywords WSi SSPD, SNSPD  
  Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-777X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1310  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title (down) Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-4  
  Keywords NBN HEB mixer  
  Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1331  
Permanent link to this record
 

 
Author Prokhodtsov, A.; An, P.; Kovalyuk, V.; Zubkova, E.; Golikov, A.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title (down) Optimization of on-chip photonic delay lines for telecom wavelengths Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051052  
  Keywords optical delay lines  
  Abstract In this work, we experimentally studied optical delay lines on silicon nitride platform for telecomm wavelength (1550 nm). We modeled the group delay time and fabricated spiral optical delay lines with different waveguide widths and radii as well as measured their transmission. For the half etched rib waveguides we achieved the losses in the range of 3 dB/cm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1196  
Permanent link to this record
 

 
Author Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title (down) Optimization of contra-directional coupler based on silicon nitride Bragg rib waveguide Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051048  
  Keywords Bragg waveguide, Si3N4  
  Abstract We report on the development and fabrication of a contra-directional coupler based on the Bragg waveguide on Si3N4 platform. Transmitted and reflected by the contra-directional coupler spectra were measured. The reflected spectra exactly matches the one notched by the main channel of the coupler. Losses are about 3dB, coupling to the directing branch of the coupler is practically lossless. FWHM of the transmitted (reflected) spectra is 3.46 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1195  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Elezov, M.; Sych, D.; Goltsman, G. N. url  doi
openurl 
  Title (down) Optimal fiber optic scheme for sub-SQL quantum receiver realization Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012140  
  Keywords sub-SQL, below quantum limit, QL, system quantum limit, SQL  
  Abstract Practical implementation of high-precision quantum measurements is an important problem in modern science. One of the main parts of the quantum receiver is the optical scheme. We developed and tested several optical circuits based on different types of interferometers, namely Sagnac-based scheme, Mach-Zehnder-based scheme, and Michelson-based scheme. All these schemes are assembled with optical fibers and fiber-optic components, since the fiber-optic implementation is closest to application in practical devices. Schemes were evaluated according to two main criteria: extinction and interference stability. On the basis of the obtained data, it can be concluded that the most suitable is the scheme based on the Mach-Zehnder interferometer. In continuous mode, we were able to obtain an interference extinction about 30 dB with acceptable temporal stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1265  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: