toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. doi  openurl
  Title Quantum key distribution over 300 Type (up) Conference Article
  Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9440 Issue Pages 1F (1 to 9)  
  Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD  
  Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Orlikovsky, A. A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference on Micro- and Nano-Electronics  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegov2014quantum Serial 1048  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. openurl 
  Title Temperature dependence of superconducting hot electron bolometers Type (up) Conference Article
  Year 2013 Publication Not published results: 24th international symposium on space terahertz technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords HEB  
  Abstract  
  Address Groningen,The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1067  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. doi  openurl
  Title Development of A Silicon Membrane-based Multi-pixel Hot Electron Bolometer Receiver Type (up) Conference Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 6  
  Keywords Multi-pixel, HEB, silicon-on-insulator, horn array  
  Abstract We report on the development of a multi-pixel

Hot Electron Bolometer (HEB) receiver fabricated using

silicon membrane technology. The receiver comprises a

2 × 2 array of four HEB mixers, fabricated on a single

chip. The HEB mixer chip is based on a superconducting

NbN thin film deposited on top of the silicon-on-insulator

(SOI) substrate. The thicknesses of the device layer and

handling layer of the SOI substrate are 20 μm and 300 μm

respectively. The thickness of the device layer is chosen

such that it corresponds to a quarter-wave in silicon at

1.35 THz. The HEB mixer is integrated with a bow-tie

antenna structure, in turn designed for coupling to a

circular waveguide,
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1111  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Heterodyne spectroscopy with superconducting single-photon detector Type (up) Conference Article
  Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages 01005  
  Keywords SSPD mixer, SNSPD  
  Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1205  
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V. doi  openurl
  Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type (up) Conference Article
  Year 2017 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 132 Issue 2 Pages 2  
  Keywords  
  Abstract Recently bright-light control of the SSPD has been

demonstrated. This attack employed a “backdoor” in the detector biasing

scheme. Under bright-light illumination, SSPD becomes resistive and

remains “latched” in the resistive state even when the light is switched off.

While the SSPD is latched, Eve can simulate SSPD single-photon response

by sending strong light pulses, thus deceiving Bob. We developed the

experimental setup for investigation of a dependence on latching threshold

of SSPD on optical pulse length and peak power. By knowing latching

threshold it is possible to understand essential requirements for

development countermeasures against blinding attack on quantum key

distribution system with SSPDs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: