|   | 
Details
   web
Records
Author Zolotov, P. I.; Semenov, A. V.; Divochiy, A. V.; Goltsman, G. N.; Romanov, N. R.; Klapwijk, T. M.
Title Dependence of photon detection efficiency on normal-state sheet resistance in marginally superconducting films of NbN Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 31 Issue 5 Pages 1-5
Keywords NbN SSPD, SNSPD
Abstract We present an extensive set of data on nanowire-type superconducting single-photon detectors based on niobium-nitride (NbN) to establish the empirical correlation between performance and the normal-state resistance per square. We focus, in particular, on the bias current, compared to the expected depairing current, needed to achieve a near-unity detection efficiency for photon detection. The data are discussed within the context of a model in which the photon energy triggers the movement of vortices i.e. superconducting dissipation, followed by thermal runaway. Since the model is based on the non-equilibrium theory for conventional superconductors deviations may occur, because the efficient regime is found when NbN acts as a marginal superconductor in which long-range phase coherence is frustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1222
Permanent link to this record
 

 
Author Zolotov, P.; Semenov, A.; Divochiy, A.; Goltsman, G.
Title A comparison of VN and NbN thin films towards optimal SNSPD efficiency Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 31 Issue 5 Pages 1-4
Keywords NbN SSPD, SNSPD, WSi
Abstract Based on early phenomenological ideas about the operation of superconducting single-photon detectors (SSPD or SNSPD), it was expected that materials with a lower superconducting gap should perform better in the IR range. The plausibility of this concept could be checked using two popular SSPD materials – NbN and WSi films. However, these materials differ strongly in crystallographic structure (polycrystalline B1 versus amorphous), which makes their dependence on disorder different. In our work we present a study of the single-photon response of SSPDs made from two disordered B1 structure superconductors – vanadium nitride and niobium nitride thin films. We compare the intrinsic efficiency of devices made from films with different sheet resistance values. While both materials have a polycrystalline structure and comparable diffusion coefficient values, VN films show metallic behavior over a wide range of sheet resistance, in contrast to NbN films with an insulator-like temperature dependence of resistivity, which may be partially due to enhanced Coulomb interaction, leading to different starting points for the normal electron density of states. The results show that even though VN devices are more promising in terms of theoretical predictions, their optimal performance was not reached due to lower values of sheet resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1223
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Semenov, A.; Goltsman, G.
Title Photon switching statistics in multistrip superconducting single-photon detectors Type Journal Article
Year 2018 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 28 Issue 7 Pages 1-4
Keywords SSPD, SNSPD
Abstract We study photon count statistics in superconducting single-photon detectors consisting of up to 70 narrow superconducting strips connected in parallel. Using interarrival time analysis, we demonstrate that our samples are operated in the “arm-trigger” regime and require up to seven subsequently absorbed photons to form a resistive state in the whole sample. We also performed numerical simulation of the light and dark count rates versus detector bias current, which are in good agreement with the experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1304
Permanent link to this record
 

 
Author Titova, N.; Kardakova, A. I.; Tovpeko, N.; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S. R.; Williams, O. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Slow electron–phonon cooling in superconducting diamond films Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords superconducting diamond films, electron-phonon cooling
Abstract We have measured the electron-phonon energy-relaxation time, τ eph , in superconducting boron-doped diamond films grown on silicon substrate by chemical vapor deposition. The observed electron-phonon cooling times vary from 160 ns at 2.70 K to 410 ns at 1.8 K following a T -2-dependence. The data are consistent with the values of τ eph previously reported for single-crystal boron-doped diamond films epitaxially grown on diamond substrate. Such a noticeable slow electron-phonon relaxation in boron-doped diamond, in combination with a high normal-state resistivity, confirms a potential of superconducting diamond for ultrasensitive superconducting bolometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1168
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Wide-band highspeed Nb and YBaCuO detectors Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 2836-2839
Keywords YBCO, HTS, Nb detectors
Abstract The physical limitations on the response time and the nature of nonequilibrium detection of radiation were investigated for Nb and YBCO film in a wide spectral range from millimeter to near-infrared wavelengths. In the case of ideal heat removal from the film, the detection mechanism is connected with an electron heating effect which is not selective over a wide spectral interval. For Nb, the dependence of the response time on the electron mean free path l and temperature T is tau varies as T/sup -2/l/sup -1/. The values of detectivity D* and tau are 3*10/sup 11/ W/sup -1/ Hz/sup 1/2/ cm and 5*10/sup -9/ s at T=1.6 K, respectively. For YBCO film the tau value of 1-2 ps at T=77 K was obtained; the NEP value of 3*10/sup -11/ W-Hz/sup -1/2/ can be obtained at T=77 K in the case of the optimal film matching to the radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 239
Permanent link to this record